

i

Hardware Accelerator for Recurrent Neural Network-
Based Sound Synthesis

A thesis submitted in partial fulfilment of the requirements

for the award of the degree

Bachelor of Engineering (Computer)

from

University of Wollongong in Dubai

by

Manohar Vohra

Faculty of Engineering and Information Sciences

May 2019

Supervisor: Dr Stefano Fasciani

ii

ABSTRACT

Neural Networks (NN) have created endless possibilities in the digital realms by

allowing machines to be equipped with human-like cognitive skills. Computers now

have the ability to perform tasks which no longer need to be explicitly programmed.

Sound synthesis is a technique where analog or digital circuits are used to generate

sound. NN based sound synthesis has been an ongoing area of research. Large

networks are trained directly with time-sequences of audio samples rather than with

extracted features from those samples. After training, these networks can

independently produce new sounds with sonic characteristics similar to those used

within training. Most implementations of such networks are not yet capable to generate

sound in real time due to the massive computational complexity required to generate

each audio sample. Providing a solution to this problem can lead to a breakthrough in

sound synthesis, reimagining how sound is generated in gaming applications,

cinematography, and other fields. Thus, the following research proposes the use of a

high-performance platform featuring a Field Programmable Gate Array (FPGA)

within a novel framework to accelerate NN kernels. A complex Recurrent Neural

Network (RNN) based sound synthesis algorithm is selected as the reference

application to design and evaluate the proposed hardware acceleration framework. In

particular, the synthesis algorithm is profiled to identify computationally critical

kernels. Kernel functionalities are then mapped to customized and parallel hardware

accelerators, which are integrated, tested and evaluated against the original synthesis

application. In this project, a low-cost FPGA platform is utilized and therefore real-

time computation is still not be possible. In general, the framework has showcased a

speed-up of the execution time of an RNN kernel by 21 times, whereas for the selected

sound synthesizer, the simulation results had indicated a speedup factor roughly

between nine to 16 times faster. Moreover, this has also enabled the identification of

hardware bottlenecks in the platform currently used. Ultimately, the proposed

framework enables custom design and easy deployment on FPGAs of accelerators for

NN kernels.

iii

ACKNOWLEDGEMENTS

I would like to take this opportunity to give my sincere thanks to Dr. Stefano Fasciani

and the Faculty of Engineering and Informational Sciences at the University of

Wollongong in Dubai.

I would also like to thank my family, friends, and most importantly, God, for giving

support throughout this journey.

iv

STATEMENT OF ORIGINALITY

I, Manohar Vohra, declare that this thesis, submitted as part of the requirements for

the award of Bachelor of Engineering, in the Faculty of Engineering and Information

Sciences, University of Wollongong in Dubai, is wholly my own work unless

otherwise referenced or acknowledged. The document has not been submitted for

qualifications or assessment at any other academic institution.

Signature:

Print Name: Manohar Vohra

Student ID Number: 5265071

Date:

v

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENTS .. iii

Statement of Originality .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

Abbreviations and Symbols .. xi

List of Changes .. 1

 Introduction ... 2

1.1 Problem Statement ... 3

1.2 Aim ... 3

1.3 Thesis contribution ... 3

 Literature Review .. 5

2.1 Sound Synthesis ... 5

2.2 Neural Networks .. 6

2.2.1 Recurrent Neural Networks.. 8

2.2.2 Co-existing NN-based Sound Synthesis ... 11

2.3 Hardware Accelerators ... 17

2.3.1 Hardware Accelerators for Neural Networks .. 17

2.3.2 Field Programmable Gate Array-based Accelerators 17

2.4 Critical Review... 22

 Methodology & Design ... 23

3.1 Methodology .. 23

3.1.1 Model Selection .. 25

3.1.2 Python Profiler ... 25

3.1.3 Accelerator Design... 27

3.1.4 Verification and Evaluation ... 29

3.2 Summary .. 30

 Framework .. 31

4.1 Development .. 31

4.1.1 Environment Setup ... 32

4.1.2 Accelerator Design... 32

vi

4.1.3 Generating Bitstream ... 35

4.1.4 Embedding an Accelerator ... 37

4.2 Utilizing the Framework .. 38

 Accelerating SampleRNN ... 41

5.1 Dependencies ... 41

5.2 Profiling ... 42

5.2.1 Top-level Profiling ... 42

5.2.2 In-depth Profiling ... 43

5.3 Identifying Bottlenecks and their Analysis .. 43

5.3.1 Gated Recurrent Unit (GRU) ... 43

5.3.2 Weight Normalisation .. 44

5.4 Hardware Design & Integration ... 45

5.4.1 Using the AXI Stream ... 46

5.4.2 Fixed-point Datatype ... 46

5.4.3 Enhancing Computations ... 47

5.4.4 Accelerator Specifications ... 52

 Results & Analysis .. 53

 Conclusions ... 57

 References ... 59

APPENDIX A Revised Project Proposal ... 62

APPENDIX B Logbook Summary Sheet .. 68

APPENDIX C STeps to Port & Test PyTorch ... 69

APPENDIX D Generic Vivado Block Design ... 70

APPENDIX E Software Re-implmentation of RNN Layer 71

APPENDIX F VIVado HLS Code for RNN Layer ... 72

APPENDIX G RNN Layer Python Program ... 75

APPENDIX H Steps to Port & Test LibROSA ... 77

APPENDIX I Top-level Profiling Results ... 78

APPENDIX J Line Profiling Results ... 81

APPENDIX K Software Re-implmentation of Weight Normalisation 83

APPENDIX L VIVado HLS Code for GRUCell ... 84

APPENDIX M VIVado HLS Code for Weight Normalisation (64x64x1) 86

APPENDIX N VIVado HLS Code for Weight Normalisation (256x64x1) 87

vii

APPENDIX O Vivado 2018.2 Combination Accelerator Weight Normalisation Block

Design .. 88

viii

LIST OF TABLES

Table 1 - Utilization statistics from Vivado 2018.2. .. 40

Table 2 - Current performance of SampleRNN with dimension set as 64. 42

Table 3 - The different dimensions the input v and g can take. 45

Table 4 – Performance metrics for GRUCell accelerators................................... 54

Table 5 - Performance metrics for Weight Normalization accelerators. 55

Table 6 - Comparison of DMA API with simulation results. 56

ix

LIST OF FIGURES

Figure 1 - (a) An example of a fully connected Neural Network. (b) A simple

illustration of neuron connections to the first Hidden Layer neuron including

the weights of the connections. .. 7

Figure 2 - Operations within a neuron. I1, I2, and I3 are the inputs to the

connections coming to this neuron. W1, W2, and W3 are the weights of the

input connections. The inputs are multiplied and summed with a bias in the

neuron. This value is evaluated upon being processed by a non-linear

function (usually a sigmoid or tanh). .. 7

Figure 3 - (a) Basic concept of an RNN. (b) If (a) was to be unrolled in time, this

will indicate how sequences are generated and how information progression

occurs. Moreover, (b) clearly showcases the BPTT occurs when the weights

are adjusted throughout these layers. .. 8

Figure 4 - The LSTM cell (Graves (2013)) ... 10

Figure 5 - Results from Paine et al. (2016). Here the Faster implementation is the

red curve, whereas the blue curve represents the original WaveNet. 13

Figure 6 - Flowchart of the methodology. .. 23

Figure 7 - SampleRNN unrolled design by Mehri et al. (2016) 24

Figure 8 - cProfile example taken from Python Documentation (2018). 26

Figure 9 - Ordinary Execution with any CPU/GPU implementation. 27

Figure 10 - The proposed framework. A hybrid model as both CPU and FPGA

are used. Note that even after the execution of the above commands, more

commands can be executed which may or may not use an overlay. 28

Figure 11 - Framework Structure. ... 31

Figure 12 - Steps to export the designed hardware from Vivado HLS to Vivado

2018.2 as an IP. ... 35

Figure 13 - Increasing the total memory range of the ZYNQ on Vivado 2018.2.

 .. 37

Figure 14 - Using the Overlay library to introduce the designed hardware within

the python program. .. 37

Figure 15 - Allocating memory. Done for both input and output of the accelerator.

 .. 38

x

Figure 16 - Transferring data to the accelerator and waiting for the output to be

complete. ... 38

Figure 17 - The RNN layer in PyTorch. As seen, there are two hidden layers, 128

input and hidden features. ... 39

Figure 18 - Converting a matrix into a row vector. The value at each position

represents what position the actual value of the matrix would take in the row

vector. .. 40

Figure 19 - AXI Stream example on Vivado HLS. .. 46

Figure 20 - Inclusion of fixed-point datatype in Vivado HLS. Highlighted in blue

are the changes from the previous snapshot. ... 47

Figure 21 - Highlighted in blue are changes made to include the tangent

mathematical function. .. 48

Figure 22 - (A) Illustrates the program at the top of the figure being executed

sequential like any other C/C++ program loop. (B) The very same program

is shown but now with the pipeline directive being used with the initiation

interval equal to one. (Figure taken from Xilinx documentation (2019b). . 49

Figure 23 - Pipeline with II equal to 2. Taken from Xilinx (2019b) 49

Figure 24 - Pipelining in Vivado HLS. ... 50

Figure 25 - The difference between executing a program with and without

unrolling. Figure taken from NECST Lab @ Politecnico di Milano (2018)50

Figure 26 - Unrolling in Vivado HLS. .. 51

Figure 27 - GRUCell timing breakdown. ... 54

Figure 28 - Weight Normalization timing breakdown.. 55

xi

ABBREVIATIONS AND SYMBOLS

ASIC Application Specific Integrated Circuit

BPTT Backpropagation Through Time

CLB Configurable Logic Blocks

CNN Convolution Neural Network

DNN Deep Neural Network

DRNN Deep Recurrent Neural Network

ES Embedded System

FPGA Field Programmable Gate Array

FPS Frames Per Second

GPU Graphics Processing Unit

HLS High Level Synthesis

I/O Input/Output

II Initiation Interval

IP Intellectual Property

LSTM Long Short-Term Memory

MAC Multiply-Accumulate

MLP Multilayer Perceptron

MNIST
Modified National Institute of Standards and

Technology

MOS Mean Opinion Score

NN Neural Network

PC Personal Computer

RAM Random Access Memory

RNN Recurrent Neural Network

RTL Register-Transfer Level

SGD Stochastic Gradient Descent

SoC Systems on Chip

TBPTT Truncated Backpropagation Through Time

TTS Text-To-Speech

1

LIST OF CHANGES

Section Statement of Changes Page
Number

3.1 Added description of SampleRNN figure 24

3.1.2 Addition of new in-depth profiling. 26

2

 INTRODUCTION
The popularity of Neural Networks (NN) has rapidly increased in the last two

decades. They allow computers to perform tasks which do not require explicit

programming. Indeed, they do so by abstracting a model from data. This, together with

the large amount of data collected in the digital age, is leading to a new era of

computing. Although the NN concept is not recent, the computational complexity

limited NN application until recent years. Major advancements in data storage and

computing architectures has enabled NNs to be used in plenty of consumer

applications. Some of which include, Automotive (Tian et al., 2018), Medicine (Oktay

et al., 2018), and Robotics (Levine et al., 2018).

In this work, the focus is on a novel NN application in the field of sound

synthesis, a technique using analog or digital circuits to generate sound. Recently, a

variety of NN architectures have been used for this purpose, providing rich, unique

sounds while reducing the cumbersome process to model acoustic bodies

mathematically into circuits (Wyse, 2018). Although most of these implementations

in literature optimize computation performances, they are not yet capable of producing

sound samples at a real-time rate.

Field Programmable Gate Array (FPGA) are chips which comprise of ‘islands’,

known as Configurable Logic Blocks (CLBs), in a ‘sea’ of configurable connections

(Xilinx, 2018a). The flexibility and computational power of FPGAs allow

implementing any computationally expensive algorithm. Performances are typically

higher than traditional Central Processing Units (CPU) as many operations can be

allocated to run in parallel. These chips can be considered as an empty canvas, where

endless designs can be ‘painted’ whichever way a developer demands it to function.

In particular, hardware designed on FPGAs provide low latency, high bandwidth, and

parallel execution, forming a suitable environment to implement accelerators

dedicated to specific applications (Xilinx, 2018a). As seen in the literature, FPGAs

have been used to speed up the computation of NNs. However, their application in the

context of NN-based sound synthesis has yet to be explored. Notably, FPGAs can

provide significant acceleration to the synthesis algorithm allowing real-time or near

real-time execution.

3

1.1 Problem Statement
In context to its many applications, sound synthesis requires real-time

computation, such as for digital musical instruments and interactive sonic systems.

This requires computing sound samples at least at a rate matching the sampling

frequency. For instance, one of the frameworks proposed by Paine et al. (2016) has a

production rate of 200 samples per second, whereas the required rate for high-quality

sound is usually at least 16,000 samples per second or more (48,000 samples per

second). If such systems with these capabilities were to be implemented using

computers of today, they would require a dedicated accelerator alongside the CPU,

which alone, would not be capable of supporting such sampling rates.

To add to this problem, the existing models are benchmarked on expensive high-

end PCs with fast CPUs and GPUs acting as dedicated accelerators. However, they

still do not produce audio at the rate required. Moreover, in real-time musical systems,

resources are limited to smaller and low-power components.

In this research, the adoption of small size FPGAs to accelerate sound synthesis

is explored. With their flexible, parallel computing, and relatively low-power

consumption for the performance they provide, they are ideal for this scenario.

Although, when it comes to utilizing FPGAs, hardware design is a challenging aspect.

Further, detailed knowledge of the algorithm is needed to identify parallelism and

exploit in full FPGA resources.

1.2 Aim
The aim of this work is to accelerate a co-existing Recurrent Neural Network

(RNN) based sound synthesizer while utilizing a System on a Chip (SoC) including a

CPU and an FPGA. The target platform is significantly more efficient in terms of

power and cost than those used in related works. Real-time performances may not yet

be achieved however, a speed up factor equal or greater than what is achieved by

expensive GPUs is aimed. In addition, a generic framework to accelerate other NN

kernels will also be developed, while providing a simple development process to

follow, essentially reducing the design-time needed. This anticipates to making

FPGAs more of an option for developers seeking high performances.

1.3 Thesis contribution

The contribution of this thesis is the following:

1. A computationally efficient hardware architecture for the RNN kernel,

synthesizable on FPGAs.

4

2. An easy to use framework for implementation of complex NNs on FPGA,

based on the porting and integration of PyTorch (2018) on a PYNQ (2018)

platform.

5

 LITERATURE REVIEW
This chapter discusses background and existing works within the sound

synthesis and NN domains. The chapter is structured as follows: Section 2.1 includes

an introduction to sound synthesis; Section 2.2 introduces NNs with a focus on sound

generation; FPGA-based accelerator designs are discussed in Section 2.3; finally,

Section 2.4 includes a summary highlighting the limitations of the state of the art,

supporting the aim of this work.

2.1 Sound Synthesis
Sound synthesis is a technique to generate audio signals with well-defined sonic

characteristics using analog or digital circuits, including software running on

computers. It is used in many applications such as musical instruments, text-to-speech

(TTS), sound design for games and films, music, and sonic interaction.

There are many different types of sound synthesis. Traditionally, periodic

waveforms such as a sine or a square wave were generated at different frequencies

upon interaction with the synthesizer. This is usually coupled with a wavetable, which

tabulates these periodic waves and others to playback when needed (Rise, 2014). To

generate slightly more complex signals, the concept of Fourier series is applied. This

suggests that any wave can be modelled as infinite summations of sines and cosines

(Imperial College London, 2018), which is exactly what is done in additive synthesis

(Smith III, 2018a). On the other hand, subtractive synthesis is where an oscillator

signal is filtered with different cut-off frequencies until the desired output is reached.

Another technique, known as physical modelling synthesis, incorporates

complex mathematical equations to model acoustic bodies for mimicking their

behaviour (Hind, 2018). Earlier techniques for this included using pre-recorded audio

samples whenever an event was triggered. This indeed was a simple, easy-to-compute

method, although, lacked realism and quality needed. Raghuvanshi et al. (2007)

investigated the real-time production of sound using a physically based model for

video game applications. The proposed system works as such: many objects within the

video game are modelled using a spring-mass system before-hand. This system

generalizes the geometry of the objects, since different shapes lead to different types

of sounds being generated. Once this operation is complete, various “modes” are

calculated using sinusoids with fixed frequencies and damping ratios. The modes

6

represent the sound to be generated by impulses on the certain mass of the object. For

example, if the corner of a drum is impacted, a different sound is produced when

compared to impact at the centre of the drum. During runtime, the combination of

waveforms triggered are played with different ratios.

The authors then aim to optimize the above stated approach to avoid having to

model many modes per object. The technique described takes advantage of human

auditory perception, where it is difficult to discriminate between frequencies played

nearby, especially at higher frequencies, hence there is a reduction in the number of

modes that need to be played if they fall within the range humans cannot perceive.

Furthermore, techniques to reduce the number of sounds being synthesized were also

applied, ultimately providing higher audio Frames Per Second (FPS).

The approach used did allow an otherwise computationally expensive model to

be able to produce audio at real-time. Although, the author could have also considered

the phenomenon known as masking, where the audio of objects with higher amplitudes

will disregard other audio samples within a nearby vicinity. Doing so will allow some

audio to never be produced as it does not add to the listeners perception.

A survey done by Serra (2007) outlines the trends of sound synthesis during the

year 2007 and discusses the challenges which will be come upon in the future. The

author states that the go-to method for real-time sound synthesis was the digital

waveguide model, which provided an efficient algorithm. The model consists of many

computational physical models which include delay lines, digital filters, and non-linear

elements, utilized only for certain instruments (Smith III, 2018b). Generally, the

models aim to depict the acoustic waves travelling. On the other hand, both corpus-

based concatenation (Schwarz, 2007) and spectral modelling methods exist where the

audio is synthesized based on given descriptions using databases available. Hence,

audio is simply concatenated together, producing a waveform. As future works found

within the field of sound synthesis, the authors have suggested a few new techniques

regarding the control, and feedback of models.

2.2 Neural Networks
A Neural Network (NN) is a computational structure mimicking the human

brain. Introduced in the early 1940s by McCulloch and Pitts, NN contain layers of

neurons, namely input, hidden, and output layers. These are interconnected together to

7

form a mesh network, where each connection has a weight associated with it, as

illustrated in Figure 1.

The weights are multiplied with the input to this connection and given to the

next neuron. Neurons contain non-linear activation functions with thresholds which

indicate whether or not a certain characteristic has been identified from the input. This

is visible in Figure 2. During the training phase, a large set of inputs along with the

desired output to the NN are presented, allowing the network to estimate the model (if

any) embedded in the data (Li, 2017). The threshold (or bias) and weights are adjusted

during this period, aiming to produce an output aligned with the ideal output presented.

Figure 1 - (a) An example of a fully connected Neural Network. (b) A simple illustration of
neuron connections to the first Hidden Layer neuron including the weights of the connections.

Figure 2 - Operations within a neuron. I1, I2, and I3 are the inputs to the connections coming to
this neuron. W1, W2, and W3 are the weights of the input connections. The inputs are multiplied
and summed with a bias in the neuron. This value is evaluated upon being processed by a non-

linear function (usually a sigmoid or tanh).

8

Many NN architectures have been proposed including, but not limited to, Deep

Neural Networks (DNN), Convolutional Neural Networks (CNN), and Recurrent

Neural Networks (RNN). The difference between the networks usually relates to their

structure, arrangement of the neurons, and training procedure.

DNNs are similar to regular NNs but consists of multiple hidden layers instead

of simply one. They are known to provide high performance when it comes to building

complex models and perform feature extraction. A drawback of such networks is that

they require lots of time in training, although with the rise of powerful processing,

these networks are seemingly more practical. On the other hand, CNN comprise of

convolutional layers which perform filtering using the convolution operator followed

by the layers of a generic NN (Stanford University, 2018) used in image applications.

2.2.1 Recurrent Neural Networks

RNNs have successfully been used in sound synthesis, and therefore extremely

relevant for this work. They provide the ability to use machine learning for applications

where sequential outputs are needed one at a time. It consists of short-term memory

modules and many feedback loops, allowing data to be correlated. A simple overview

of the RNN system can be thought of as a regular neural network with a feedback as

seen in Figure 3a, however, when unrolled, the system is broken down into many

subsystems shown in Figure 3b. These cascade subsystems communicate to their

successor the output of that timestep. The next subsystem now has two inputs: one

corresponding to the current input, and secondly, the previous output.

Figure 3 - (a) Basic concept of an RNN. (b) If (a) was to be unrolled in time, this will indicate how
sequences are generated and how information progression occurs. Moreover, (b) clearly

showcases the BPTT occurs when the weights are adjusted throughout these layers.

9

During the training phase of a regular NN, the weights are adjusted through

verifying whether or not the output is valid. Once this is decided, the network provides

a feedback, known as backward propagation, essentially changing the weights by

performing partial derivatives of the error with respect to the weights. Following this,

the gradient descent algorithm is used to make sure the weights are updated only to

minimize the error. Within RNN, a mechanism similar to this, labelled Backward

Propagation Through Time (BPTT) is actioned. Here, since the network consists of

many subsystems, when the feedback is given, it can be thought of as propagating

through time until the very first subsystem (Johnson, 2017).

A problem related to RNNs is the vanishing effect of the gradient, whereby the

network does not learn anymore due to the gradient being small, leading to no updates

being made. Usually, when the gradient is calculated, BPTT leads to the multiplication

of the gradient value by many matrices, causing the value to sometimes be very small.

Similarly, the opposite effect may occur, where the values are extremely large, known

as exploding gradients. This results in RNNs to have degraded performances and

instability. A technique to resolve this issue is with the addition of Long Short-Term

Memory (LSTM) modules. These replace the traditional short-term memory modules

with slightly more complicated ones, which ensure to store important information for

long, providing abilities to incorporate long-term dependencies.

Setting aside the application studied by Graves (2013), a study of how complex

sequences may be generated using LSTM RNNs is shown. The author particularly

explained how RNN are ‘fuzzy’, as they do not simply generate outputs based on given

training data but instead look more into the dependencies amongst data. Furthermore,

having a large number of inputs (high dimensional) makes the network

computationally expensive, but since RNNs are ‘fuzzy’, they do not encounter this.

The LSTM cells, shown in Figure 4, allow the network to handle what is being stored

in the cell with the help of another set of activation functions. It also is able to identify

whether the stored information should affect the current time sample through the

output gate, whereas the forget gate decides if at all this information should be kept

any longer.

10

The author was able to generate complex sequences with credible results. With

the feasibility of using such resource-expensive modules (LSTM cells) in question,

they do pose as an essential component within RNNs.

Furthermore, Chang et al. (2017) studied an extreme case of these problems

through the generation of long sequences. This involves having to include extremely

long-term dependencies, while maintaining short- and mid-term memory. The

proposed architecture, labelled DilatedRNN, is a composite of skipped connections

allowing fewer parameters, and a hierarchical design looking to store different

dependencies through time. Further analysis on the dilated connections indicates that,

when compared to regular RNNs, connections moving from one timestep to another

are skipped by some proportion. Doing so will allow a significant improvement in

speed through parallel execution, which lacks in regular RNNs. This is done by no

longer having many interconnections, which usually implies that for the model to

proceed in processing to the next timestep, the previous ones must be complete, else

no input will appear to the current timestep. Instead, now that there are fewer

dependencies, executing the various connected cells simultaneously improves

performance by s times, where s is the number of skipped connections. In order to

maintain long-term dependencies and avoid vanishing/exploding gradients, the

architecture deploys the use of multiple hidden layers which have the parameter s

increasing exponentially. Hence, it can be said that each layer/hierarchy takes into

account different ranges of dependencies, where lower values of s incorporate short-

term dependencies and vice-versa. Results obtained through this methodology were

competitive, however, the model achieves desired results only in some applications.

Figure 4 - The LSTM cell (Graves (2013))

11

Further, it is detailed that speed performances have been accelerated although it is

unclear how long does it take for execution when compared to other models running

on the same system.

2.2.2 Co-existing NN-based Sound Synthesis

Oord et al. (2016) proposed a neural autoregressive generative model, WaveNet,

in a study to evaluate its performance for raw audio signal generation. The study

specifically aimed to tackle the requirements posed by audio synthesis being a

demanding task in terms of temporal resolution. Simply put, sound synthesis requires

at least around 16,000 samples per second to be generated to produce decent quality

output, whilst ensuring that the samples are correlated at different granularities.

The model utilizes dilated causal convolutions, a method which can increase the

receptive field (amount of connections from the input to the next layer. Also known as

the filter size) without having to increase the computational cost significantly. It is

important to have a larger receptive field so that more features can be extracted and

considered. In addition, since each audio sample is stored as a 16-bit integer, and since

the next audio sample must be generated by the previous ones through a probabilistic

algorithm, the authors have used mu-law companding for compression, which makes

the possibility of an audio sample from being 216 different values to just 256. This

reduced the number of outcomes of the probability, making it easier to work with.

Furthermore, additional parameters which alter the characteristics of the audio

generated can also be provided to the model.

Thorough testing had been conducted, where the Mean Opinion Score (MOS)

was calculated based on listeners giving scores for sounds generated by the proposed

model and other models. Results clearly indicated that the model proposed was

preferred and thus proved that the autoregressive model can be used to implement such

applications. On the other hand, another outcome of this work was that tests done on

music generation indicated that the receptive field was vital, as the audio will not be

acoustic otherwise. For instance, the current sample and previous many samples must

have correlation when it comes to music, else random tones will be synthesized. All in

all, Oord et al. (2016) addressed many challenges faced during the design of the model.

They provided reasonings for their considerations for most aspects of the design,

12

comparing alternatives as well. Moreover, the authors do not analyse the rate at which

sound is synthesized.

Paine et al. (2016) proposed an algorithmic enhancement of the previous

framework which drastically reduces the computational complexity of the network. In

general, the authors took a deeper look at the redundant calculations being conducted

in the original approach and replaced this with memory caches in the form of a queue.

This then allows the network to avoid recalculating certain parameters during runtime,

reducing the computational complexity from O(2L) to O(L), where L denotes the

number of layers. The way the queues operate is, due to the original model utilizing

dilated convolutions, outputs of each layer will be based on the ones many timesteps

behind. Therefore, the queues will have varying length based on the dilation at each

layer. Since the original model had an exponentially increasing dilation, the length of

the queues will also exponentially increase as 2l, where l is the hidden layer number.

In addition, the behaviour of the queue is first-in-first-out. This facilitates the

fact the data stored initially will be of timesteps further away and is needed to be taken

into account at first. Moreover, remodelling the system with the above stated changes

allows a new interpretation of the network. Instead of being a CNN, it can now be

thought of a multi-layer RNN, where the inputs to a neuron is the expected input plus

a parameter from the queue (popped out of the queue). In result, it provides the output

which is passed onto the next layer, and a new parameter pushed onto the queue.

To verify if the new enhancements actually provide better performances, the

network is compared with the original having the same trained parameters. It was clear

that the new additions to the framework proves to be much more real-time oriented

through its low variations when the number of layers is increased. Hence, it can be

said the new model is much more predictable. On the other hand, the work presented

by Paine et al. (2016) is among those measuring the amount of time taken to generate

a single sample of audio. However, no details have been provided, other than the use

of a GPU, on the specifications of the machine used for this purpose. Further analysis,

illustrated in Figure 5, shows the frequency at which audio is produced indicating a

mere 200Hz (one sample = 0.005secs with a single layer), whereas a larger model (15

layers) would produce at 100Hz and 6.25Hz for the enhanced and original approaches,

13

respectively. These results clearly indicate significant room for improvement of the

current state.

Another model proposed by Mehri et al. (2016), SampleRNN, investigates audio

generation using RNNs. This differs from the above model such that it does not utilize

Deep Neural Networks (DNNs). Further, instead of dilated causal convolutions, a

technique known as Truncated Backward Propagation Through Time (TBPTT) has

been implemented. The problem this paper resolves is that audio signals have plenty

of samples for a single word being spoken. This implies that any kind of audio

generation needs to consider the fact that to produce an audio signal which is

intelligible, it must come in with many samples put together. Previous methods

involved compressing the signal, followed by identification and modelling of audio

dependencies. However, when the signal was decompressed, the quality of the

waveform was degraded.

Therefore, Mehri et al. (2016) propose the use of RNNs to model the

dependencies (feature-extraction, therefore reducing the samples that need to be

generated). Although, RNNs themselves are not the best when it comes to producing

a massive number of samples required in this application, the model proposed has a

hierarchical implementation. Doing so compliments yet another requirement of audio

generation, where dedicated hierarchies consider only audio samples with correlation

with nearby samples and other hierarchies for samples far away. Similar to the work

detailed in the previous subsection by Chang et al. (2017) however in another context.

Figure 5 - Results from Paine et al. (2016). Here the Faster implementation is the red curve,
whereas the blue curve represents the original WaveNet.

14

Hierarchies, called tiers, each look at the input samples differently. For instance,

the highest tier, where the initial input is provided, considers dependencies at frame-

level. Whereas the for the lowest tier, analysis of data is considered at sample-level.

Hence, each tier has its own frame size to identify dependencies from. Once the data

is analysed, it is then provided to the tier below it, allowing dependencies from a large,

down to a low range to contribute before producing an output.

Note that each tier will have two sets of inputs (except for the topmost, which

has one), where one represents the input of this tier at a certain timestep, while the

second being the modelled dependencies coming from above the tier. Flowing down

the tiers, data is up-sampled to match timing resolutions, ensuring computation is

mathematically appropriate. The computation done is between the current inputs

multiplied by the weights, added to the data from the tier above. Followed by the up-

sampling mechanism (perforated: concatenate zeros and perform linear convolution).

Since the lowest tier does not require to model long-range dependencies, the

authors have utilized a memoryless Multilayer Perceptron (MLP) network. This is the

generic type of NN which has been described earlier and is chosen since it does not

demand as much resources as RNNs. For the output of the network, linear quantization

is performed to discretize the values, followed by a softmax layer. The functionality

of this layer is to map a vector into a probability distribution, where each element of

the vector is given a probability. To further enhance the results here, mu-law

companding, which is a non-linear quantisation technique could have been

investigated, reducing the number of probabilities to consider as applied by Oord et al.

(2016).

When Oord et al. (2016) designed WaveNet, they did not consider RNNs due to

their prolonged training times, however, the authors here tackle this through TBPTT.

Similar to BPTT but with long sequences being shortened, so the updates do not have

to go as far as the beginning of the network, which they technically would have to

otherwise. The authors here have presented a framework which provides competitive

results, where human listeners mostly preferred the output of this model than any other

compared with. The author also provided an analysis of which method to use among

Gated Recurrent Units (GRUs) (explained below) and LSTM, suggesting the former

15

performed slightly better. On the other hand, the author has not considered providing

timing performances, failing to state whether audio production is fast enough.

The inputs provided for training a NN-based sound synthesizer are critical

information on the desired sound (i.e. the pitch, amplitude, instrument type) and an

audio sample. Wyse (2018) studied the effect of data-driven sound synthesis models

with real-valued parameters. The model requires an initial input audio sample

concatenated with parameters, ultimately forming a vector. Once provided, the model

continues to generate audio samples (previous output is current input). Though, at each

timestep, the parameters are continuously provided, giving an opportunity to change

sound characteristics during runtime.

In addition, the net also includes GRUs. These are like LSTM cells, with a

similar aim to resolve gradient problems with RNNs stated earlier. GRUs can

selectively store dependencies from different time instances although it does not

contain memory cells. They are far less complicated in design and outperform LSTM

cells in certain applications (Chung et al., 2014). With regards to the design proposed

by Wyse, there exist a four-layer RNN with GRUs, all consisting of feedback

connections to itself. Both input and outputs are processed through linear mappings,

where the vectors are decoded and encoded, respectively. Since the training parameters

are implicit (many parameters included rather than primarily one, hence model

considers multiple input variations) and not conducted for all the possibilities of each

parameter, the challenge would be how the model will react to a certain parameter

changing.

The author only provides an overlook on the pitch parameter which, when

trained on two extreme pitches only and then provided inputs of linearly increasing

pitch between these two points, provides results which successfully interpolate

between the two trained points. But it is worthy to mention that performance is much

better when near to trained data. Furthermore, another challenge within such an

architecture is to do with the responsiveness of the network to changes in the

parameters. A problem seen in previous models by the author were discrepancies in

desired output with small errors accumulating due to large variations in the input when

compared to the trained inputs. But the method chosen here does not allow such effects

to occur. Once again, a model is trained with extreme pitches. When parameters are

16

changed during runtime, and the new inputs which are never seen by the network are

passed, the system was able to react and provide meaningful alterations.

The author does not investigate other parameters being changed but does

mention that the pitch is something rather perceived than seen clearly (never perfect

periodicity). This makes the pitch an attribute harder to correlate. On the other hand,

as future works, the author claims that the system is not yet real-time however, fails to

mention any quantitative statistics.

In another attempt to improve the speed performances of WaveNet,

Kalchbrenner et al. (2018) have synthesised WaveRNN. The authors identified an

equation accounting for the time taken to generate audio samples and thus tackle each

variable to achieve real-time capabilities:

𝑻𝑻(𝒖𝒖) = |𝒖𝒖|�(𝒄𝒄(𝒐𝒐𝒐𝒐𝒊𝒊) + 𝒅𝒅(𝒐𝒐𝒐𝒐𝒊𝒊))
𝑵𝑵

𝒊𝒊=𝟏𝟏

 (1)

T(u) is the time taken to produce u samples per second. Each sample consists of

processes occurring at N layers, where the time taken by operations within each layer

can be broken down into computational (c(opi)) and overheads (d(opi)). Computational

time is the actual time taken for executing operations (i.e. an addition). Whereas, the

overhead would be the time taken in invoking the operations (i.e. calling the function

to perform addition). One of the major changes within the proposed model here is that

it utilizes a single-layer RNN instead of the original CNN within WaveNet. Doing so

enables reduction in the value of N by nearly 12 times, without degrading sound

quality. On the other hand, computational costs can be reduced when the parameters

in the network are reduced. This is fulfilled by a technique known as weight pruning

(Narang et al., 2017), where analysis of the network weights for recurrent and linear

layers is conducted whereby elimination of the weights contributing the least to the

outputs is actioned, resulting in a smaller, sparse network. Lastly, the term u

representing the samples produced must also be minimized as it is multiplicative term

in the time equation. For this, the author proposes sampling in batches, where the

dependencies will occur among batched samples which are much fewer than

otherwise.

With the above changes, the network uniquely becomes much more suitable for

an embedded system than ever before as there is a reduction in memory and

17

computational costs. The author also provides information on running such a model

on mobile CPUs proving its effectiveness, achieving 19,800 samples/sec (minimum).

Additionally, overhead costs are minimized through enabling GPU usage within the

TensorFlow library (TensorFlow, 2018). Hence, with the upcoming of GPUs on

mobile devices, the proposed model can lead to many new applications of similar kind.

The work exclusively situates itself as one of the only real-time models, although it

would be noteworthy to test the system architecture to produce raw audio rather than

simply Text-to-Speech (TTS).

2.3 Hardware Accelerators
Hardware accelerators are when special hardware devices, such as GPUs and

FPGAs, are used to perform tasks outside of the CPU to provide faster execution.

Moreover, hardware accelerators also prove to be effective when it comes to power

consumption and large data bandwidth (Intel®, 2018).

2.3.1 Hardware Accelerators for Neural Networks

Since NNs are computationally expensive algorithms, especially with larger

models, the use of hardware was expected to accelerate them. Works presented by Oh

and Jung (2004) demonstrates an implementation of NN-based text detection system

on GPUs. The authors look at taking the most repeated operation of a NN, which in

that case was the multiplication between an input and a weight with an addition of the

bias, placing them in three separate matrices for each layer. These variables are first

transferred to the GPU. Next, the equation is computed in one-shot, taking advantage

of the repetitive nature and parallel computation possible. With a simple test run, the

GPU provided a 20-fold increase in performance. Although the results are not shown

with extensive details, nor have many test cases been analysed. Overall, a simple

concept of how GPUs can be included within NNs has been showcased.

2.3.2 Field Programmable Gate Array-based Accelerators

An alternative to using GPUs are FPGAs. These are reconfigurable hardware

that, off the box, do not provide any functionality. They are required to be programmed

(design hardware and download bitstream) in order to implement a specific

computational architecture. For development purposes, FPGAs are well-known for

providing a cheaper, quicker (production, since they only need to be designed and

uploaded to the chip), but slower and more power-hungry alternative to Application

Specific Integrated Circuits (ASICs).

18

Chang et al. (2015) propose a RNN-based implementation on an FPGA. RNNs

are difficult to accelerate as they are naturally sequential, however, due to their

popularity, there exists a need to investigate optimizations for such networks. The

model created includes the usage of a two LSTM layers and 128 hidden units. As for

the architecture design here, the LSTM cells do not look at the stored data to decide

whether it must be forgotten or not. Instead, there are many functions which control

this. In hardware, this module consists of a three gate and one element-wise

submodules. The gate submodule consists of Multiply-Accumulate (MAC) blocks

which perform the multiplication and addition of the weights being multiplied with the

input. This is performed for the current timestep and previous output simultaneously.

Following this, the outputs are added and passed on to the non-linear function blocks,

which compare if the result activates them or not. This information is then passed on

to the next layer and the process is repeated. Data coming in is taken from the Direct

Memory Access (DMA) block which needs to be synchronized using buffers. Another

aspect which must be considered here are the datatypes. For the inputs of the LSTM

cell, the data is brought from 32-bit to 16-bit, but after the multiplications, the datatype

is 32-bit once again. The data format of the 16-bit numbers are fixed point, with 8 bits

for both the fractional and integer parts.

Once the data is calculated from the gate submodule, it is passed to the element-

wise submodule, where the final output is calculated along with a control signal. The

control signal decides whether the output must be stored or not. The module is

synchronised into sequential stages, which utilize parallelism within. Among the

stages, signals are stored as internal vectors for the next stages. The network, due to

the limitations on datatype, is not as accurate as other implementations. However,

other FPGA models showcased far worse performances due to using floating-point.

Results shown regarding the execution time are vague as they only represent

operations per second. A gap in this architecture would be that sequential stages were

still used. If it is possible to eradicate this, far better performances can be achieved.

On the other hand, the proposed solution shifted the complete network onto the FPGA,

instead, a hybrid design involving the use of a CPU plus FPGA can improve results

(CPU does perform certain tasks much better).

19

Huynh (2017) states that for the implementation of DNNs, general purpose

hardware is not suitable since they are slow, expensive and have a high power

consumption. Instead, the use of reconfigurable FPGAs is applied. Designing

dedicated hardware for this include considerations of datatypes for the inputs and

weights, and how these will be stored in memory. These factors ultimately decide how

fast and accurate the network will be. The framework proposed provides the user the

opportunity customize the structure of the network to their own needs through changes

made in the VHDL program. It uses 16-bit half-precision floating point for

data/weights within the layers of the network. It works such that there are control

signals which indicate which layer is being computed currently, and so data is pulled

out of memory for that layer. The network is formatted such that there are many neuron

blocks in the network. Within these neuron blocks, the first step conducted is the input

multiplied by the weight of the connection to the neuron. After this, the activation

function is evaluated. These steps within the neuron block are conducted sequentially.

Since a layer has many neurons, the many blocks, in parallel, perform this execution.

Testing is done using the Modified National Institute of Standards and

Technology (MNIST) hand-written dataset. The system was able to gain high resource

utilization, while maintaining accuracies. It is vital to mention accuracies here as the

datatype used will directly affect this. There were other models which had better

performances, but the design here proved to be easier to use in terms of training. On

the other hand, the author only investigates fully-connected DNNs, having only a

single physical computing layer. In addition, the author mentioned about being power

conservative however no results have shown how this compares to other

implementations. Moreover, a possible pre-fetch of data can also be considered while

computation is occurring to avoid waiting for data to be pulled. Also, as additional

results, performance in terms of speed would provide further analysis on how the

model developed competes. Lastly, the design methodology looks at simply

implementing the complete network on the FPGA but there might be some operations

that may be better to have implemented on a CPU, thus creating a hybrid model, as

mentioned earlier. This of course requires further in-depth as to what actually are the

bottle-necks within DNNs.

20

In contrast to the above work, Guan et al. (2017) study the runtime acceleration

of LSTM-RNNs on an FPGA. The authors do perform profiling of a selected

application to analyse segments of the network which are bottle-necks currently.

Results indicate that the program spends most time inside the LSTM cells which have

a complex algorithm as mentioned earlier. Another aspect of the network which

requires enhancing are the activation function, most of which either involve division

or complex mathematical operations (i.e. tanh). The enhancements performed for the

above two problems is as follows. The LSTM cells are broken down into smaller

modules within the cell, allowing the individual components to execute in parallel.

Data coming in and out are buffered and distributed using crossbar technique. With

regards to the activation functions, these are replaced by simpler operations such as

addition and shifting which mimic the complex non-linear functions. The

approximation of the functions does lead to inaccuracies, although when calculated,

the authors found subtle differences.

Another key issue when designing hardware is the communication between

memory modules and the FPGA. This usually adds to the overhead cost of the network.

To tackle this, the authors include revamping the matrices in memory so that the

accesses are fewer and in a regular pattern. Moreover, a data dispatcher is designed to

improve bandwidth. For this purpose, the AXI4Lite bus (Xilinx, 2011) is used, which

is a communication interface. The model was then tested, providing up to 20 times

faster execution time. The resource utilization was moderate. Comparison with another

model were inconsistent as the size of the networks differed greatly. As a deeper

analysis, the author identified the LSTM cells as a crucial factor in execution of the

network, however, an alternative mentioned earlier was the use of GRUs, which are

essentially far less complex. It would be worth testing the performance with GRUs and

seeing the speed-up factor, if any. In addition, AXI4-Steam interface was not

considered by the authors. These provide means through which larger amount of data

to be transmitted together (Xilinx, 2011). Lastly, the model uses 32-bit floating point

datatype, which is expensive to use but would definitely provide high accuracy, which

were not recorded.

Hao and Quigley (2017) have also designed an accelerator on an FPGA but for

Deep RNNs (DRNNs), aiming to prove how the FPGA-based technology can be

21

brought into Embedded Systems (ES). The reason why this research is significant is

that most implementations of NNs have often been implemented using high-end CPUs

and GPUs. The case with ESs is that they do not have this luxury, nor do they have

soft power or memory constraints, leading to fewer DNN implementations. The

proposed solution involves building a DRNN using Theano, a library which the author

claims to be most suitable for a 32-bit Operating System (OS). It also requires less

memory than alternatives which is key for the purpose. The board used for the

implementation is the Xilinx PYNQ-Z1. This uniquely provides an dual-core ARM

Cortex A9 microcontroller simultaneously with an FPGA (Digilent Inc, 2018). The

combination of being able to develop Python applications and include hardware

acceleration together makes this platform extremely powerful.

With respect to the NN design, the model houses three hidden LSTM layers. The

computation within these layers to drive the logic is programmed through Theano.

Interconnections among these layers are as discussed before although at the output

layer, the use of a softmax function is actioned. To train the network, the error

calculation is done through the cross-entropy function and applied using the Stochastic

Gradient Descent (SGD) method. This is exactly what was explained earlier regarding

gradient descent, where partial derivatives of the error are taken with respect to the

weights and adjusted. As for the accelerator, the hardware designed performs matrix

multiplications and addition, as seen in designs above as well. To further increase the

performance capabilities, the design incorporates five processing elements as the

matrices are large. Unlike the previous work, the authors here have included the AXI

Stream for batch data transmission from the memory to the FPGA. Hence, having

multiple processing elements and providing large data through this interface provide a

design which goes hand-in-hand.

Overall the accelerator can perform 2500 additions and multiplications each,

while having a latency of only 250ns. Moreover, the authors do not highlight how the

datatype, which was fixed point, selected (only mentioned in results) affected the

accuracy of the overall model. Also, no information had been provided on the structure

of the datatype such as how many bits were allocated for the integer and fractional

parts. Furthermore, the hardware design could have included many other segments of

the NN, perhaps profiling and further investigating the LSTM modules. Note that the

22

work mentioned earlier did state that most time was spent within the LSTM cells,

which contradicts the work here. Since the authors aimed at bringing such architectures

to ESs, a timing analysis other than operations per second would definitely analyse

whether this was achieved. In addition, lack of depth was shown in to how the Overlays

(library to communicate with hardware design) were embedded into the design. Lastly,

the authors fail to recognise other NN libraries such as PyTorch, which indeed is

powerful especially when using Python.

2.4 Critical Review
The literature reviewed in this chapter has provided an extensive breakdown on

the current state-of-the-art models. As future works found within the field of sound

synthesis, a few new techniques regarding the control, and feedback of models can

enhance performances. Moreover, sound synthesizers must look at the auditory

perception of humans to eradicate generation of certain waveforms within algorithms,

essentially reducing the computations required. In terms of NN implementations of

sound synthesizers, a common gap seen is that authors do not express how much time,

approximately, it takes to generate a second of audio, similar to what was done by

Paine et al. (2016). Results shown by this author clearly indicated that even the model

deemed faster than one of the state-of-the-art can merely produce 200 samples per

second which is extremely slow. Although time performances are platform dependent

(i.e. faster CPU provides faster execution), authors can execute the work they compare

on the very same platform and mention the specifications of it, informing the reader or

other researchers how the results were obtained. This will provide a fair and

informative conclusion. Moreover, the FPGA designs studied included many

sequential stages (i.e. Huynh (2017)), which indeed can be remodelled or executed on

a CPU as a hybrid architecture. Usually, when hardware is designed, synchronisation

and communication become key factors which must be taken into account for the

success of the design. Indeed, these factors add to the complexity of using FPGAs and

other hardware as some techniques are not conspicuous, requiring expertise.

23

 METHODOLOGY & DESIGN
This chapter details on the methodology to systematically approach the problem

discussed in the previous sections. First, we provide a high-level description. This is

followed by an in-depth look into the system design highlighting its robustness.

3.1 Methodology
The proposed design aims at enhancing the speed at which audio is generated by

an RNN-based sound synthesizer. A breakdown of the approach is shown in Figure 6.

To begin with, the model chosen is a PyTorch implementation of SampleRNN

coded by Kozakowski et al. (2017). The system was originally designed by Mehri et

al. (2016) as examined earlier which consisted of a hierarchical design, as seen in

Figure 7.

Figure 6 - Flowchart of the methodology.

24

As the network unfolds from Tier 3 down to Tier 1, the memory granularity

increases or, in other words, the scope at which sound is correlated changes from a

broader range right down to samples near each other. The broader range tiers consist

of GRUs whereas the sample-level tiers are convolutional layers.

In order to accelerate any model successfully, it is essential to identify the

bottlenecks of the system. To perform such analysis, the program implementing the

RNN-based synthesis must be profiled. Profiling is a technique monitoring code

execution, resulting with details on how much time is spent in each function and how

many times the function is called. For the current scenario, profiling must be conducted

on the program which produces the audio only (i.e. network inference). Once we train

the network, the segment generating audio can be isolated and profiled, where the

functions requiring the most amount of time to execute will be further analysed. It is

important to understand the functionality of the time-consuming commands as its

feasibility on the FPGA will be in question. For instance, if a command is found to be

accountable for 90% of the execution time, however, if it cannot be recreated on the

FPGA to mimic its behaviour, significant acceleration will not be achieved. Therefore,

the commands must be taken to the lowest level possible (function calling another

function and so on) to be able to judge this.

Once the analysis is complete and it is known what operations should be

designed on the FPGA, it must be implemented using one of the four methods as

follows. First of which involves using Vivado HLS by Xilinx to create an Intellectual

Figure 7 - SampleRNN unrolled design by Mehri et al. (2016)

25

Property (IP) using C Synthesis. On the other hand, another technique considers

implementing a visual design using System Generator (another tool by Xilinx) which

will also be exported as an IP. Moreover, a combination of these two methods can also

be incorporated. Both these tools are available in the Design Suite by Xilinx (Vivado,

2018). Alternatively, the design can also be programmed in VHDL. More details will

be given on these in upcoming subsections.

Regardless of the technique applied, the designed components will be

continuously verified. Testing will be done to ensure that the model designed in

hardware provides the correct output for a set input, whereas evaluation will also then

be conducted to measure the speed-up factor.

To be able to generalise the framework which will accelerate any RNN-based

application, all design considerations must be taken into account. This will allow

developers using this framework to understand what steps will make their designs

perform better. Furthermore, FPGA design is challenging and so the proposed

framework integrates an existing deep learning programming environment with FPGA

deployment tools. This simplifies designing and deploying accelerators for NNs,

allowing developers to implement and evaluate application-specific accelerators.

3.1.1 Model Selection

The model selection was done after attempting to execute source codes of

various models discussed in the literature and testing them on a PC. SampleRNN was

one of the models which provided great flexibility in the way the program can be used.

For example, multiple flags can be provided to alter the size of the network, whether

to use CPU or GPU and so on. This implies that the model can be tweaked with ease

without having to modify the actual code. Although, when required, the program is

packed with many classes which can be used to achieve more personalised

requirements. Furthermore, preliminary results indicate that the model was able to

produce audio at 49.3Hz and 441.5Hz on recommended settings, using CPU and GPU

respectively. The results are clearly evident that there is a significant amount of room

for improvement.

3.1.2 Python Profiler

The purpose of a profiler is to provide statistical information for a piece of code

upon execution. This information may include, the amount of time spent at a

26

command, the amount of times a function was called and more. ‘cProfile’ and

‘pprofile’ are profilers recommended by the Python documentation (2018). The former

provides an easy-to-use, lightweight mechanism (less overheads, much better for

embedded platforms) which will be utilized within the analysis here. An example is

shown in Figure 8. Between enable and disable, the function calls for generating audio

will be placed.

In Figure 8, alongside ‘cProfile’, another library known as ‘pstats’ is also added.

This allows developers to manipulate and showcase data in different methods. For

instance, it is currently set to sort data by the cumulative time spent (usually the case

when a function is called more than once). In addition, the ‘io’ library allows the pstats-

manipulated data to be stored in a string, which is later displayed. Note that the profiler

itself does provide raw data (ps.print_stats()).

Once this top-level analysis is conducted, the results help narrow down the

search for bottlenecks from the complete program down to functions used within.

Although, most functions will perform a variety of steps before returning, simply

knowing which function occupies most of the CPU time within a program is not

sufficient to identify the actual bottleneck just yet, but a step closer is accomplished.

Hence, once the top-level profiling has been completed, an in-depth look into those

time-consuming functions are necessary at line-level. This can be done using a tool

developed by Kern (2019), wherein handles are placed just before the function bodies

of whichever function is being aimed to be further studied. The tool is then invoked

on the python program using command-line, where execution and monitoring begins,

finally providing results which dictate how much time was spent, in seconds and as a

percentage, at each line of a function throughout the program execution. Doing so will

allow to keep tasks which are indeed handled by the CPU far better to not be ported

Figure 8 - cProfile example taken from Python Documentation (2018).

27

onto hardware, which will save development time and resources available on the

FPGA chip.

3.1.3 Accelerator Design

The proposed framework will be based on the Xilinx PYNQ-Z1 board (Digilent

Inc, 2018). The Systems on Chip (SoC) uniquely provides a single platform solution

containing both a microcontroller, and an FPGA. Integration between the

programmable (RISC microcontroller) and reconfigurable (FPGA) components is

done through a concept of a software library labelled as Overlays. In conjunction with

a powerful Python developing environment and a Debian-like Operating System, the

board places itself perfectly for the purpose. The board has been used to accelerate

Deep Recurrent Neural Networks by Hao and Quigley (2017). What the authors of this

paper have failed to take into account is one of the most competitive NN libraries,

PyTorch (2018a). This research will also be the first to execute PyTorch-written code

on the PYNQ-Z1, which is expected to open a gateway of new applications and their

enhancements.

Figure 9 and Figure 10 compare regular execution with the one proposed here.

In particular, Figure 10 illustrates the hybrid runtime execution behaviour of the

framework. Note that a hybrid design is chosen as some operations perform much

better or are convenient to do on a CPU than an FPGA.

Figure 9 - Ordinary Execution with any CPU/GPU implementation.

28

Multiple executions of SampleRNN must be conducted to retrieve and tabulate

the inputs and outputs of these commands to later compare with the hardware designed.

The description of the commands along with their input and output results will form

the basis to the following hardware design.

As mentioned earlier, there are four methods which can be used to implement

hardware design on the FPGA. In this research, due to longer design-time required

along with extremely high complexity, the VHDL approach will not be considered.

Instead, the implementation uses High Level Synthesis (HLS) tools enabling hardware

generation from C-like code. Between the three, the approach of using C Synthesis

allows complex operations to be performed using broad available libraries, and

inclusion of powerful compiler directives. Therefore, it is utilized here.

Ultimately, the IP is brought into Vivado 2018.2, a powerful software by Xilinx

for FPGA designing and testing purposes. It begins with the block design, where other

required elements (such as processors and interfaces) are connected to the IP designed

above. Once the design is verified, synthesis and implementation phases are executed

to finally generate a bitstream. This contains the binarized design information. Along

with this, the physical block design must also be exported (as a .tcl file). Both these

files will be needed to configure the overlay. Since the concept of an overlay is native,

an application can include the hardware accelerator in between other lines of code with

Figure 10 - The proposed framework. A hybrid model as both CPU and FPGA are used. Note
that even after the execution of the above commands, more commands can be executed which

may or may not use an overlay.

29

a few commands. Note that if multiple commands are to be accelerated, multiple

overlays commands must be called for downloading bitstreams onto the FPGA or a

single overlay can include multiple accelerators, which is subject to resources

available.

3.1.4 Verification and Evaluation

Testing begins from the very early stages, where to select an application,

multiple models are tested. Majority of testing will, however, be conducted during the

design phases. The C synthesis program is debugged by exporting the programs as an

RTL (Register-Transfer Level) within Vivado HLS to Vivado 2018.2. Once the

bitstream is generated, the hardware can be provided inputs and the outputs can be

compared using the mean-square error. Testing will ensure that the correct

functionality has been accomplished within the hardware designed. The final stage of

testing will be when the overlay is called within the SampleRNN program.

Evaluation includes obtaining performance metrics. This will answer whether

the speed of the program has been accelerated, for which the original program must be

timed while generating one second of audio. After embedding the accelerator into

program, the timing performances must be recalculated. To do so in a Python program,

the ‘time’ library can be used. Time checkpoints will be made before and after

generating sound to obtain the execution time. A ratio representing the speed up factor

can be calculated from this. Moreover, the same process can also be replicated on a

high-end PC with/and without a GPU to illustrate the effectiveness of the new model.

Speedup factor will be measured using statistical analysis over multiple executions.

The accuracy of the sound produced by the accelerated system will also be

considered. This is particularly important in cases where hardware accelerators use

different data representations than the original application. For this, the aim is to ensure

that the overall differences cannot be perceived by the human auditory system (Nave,

2018). Ideally, it is expected that there are no differences in the sound samples when

these are represented with as little as 16-bits. Accuracy issues are determined by FPGA

not having predefined datatypes, unlike in Python, where the number of bytes can be

increased to fit any number possible. In addition to accuracy, the speed performance

of the accelerator is also affected by the datatype chosen. Since a fixed-point datatype

will be utilized to provide high performances when compared to floating-point

30

numbers, the results of mathematical calculations will definitely be degraded. On the

other hand, the Mean Opinion Score (MOS) (ITU, 2016) can also be included as a

measure to identify the depth with which quality is lost in perceived audio when using

other datatypes.

3.2 Summary
The methodology to accelerate an RNN based sound synthesizer using an FPGA

starts by first selecting a co-existing model. Followed by this, the program must be

profiled to identify which operations within the network cause a significant delay. An

in-depth analysis must be then conducted on these operations, eventually modelling

prototype designs. These designs undergo multiple testing and refining. The end

product of this will be a bitstream, which, upon uploading onto the FPGA, can be

substituted in the model, where performances such as speed and accuracy are

evaluated.

31

 FRAMEWORK
This chapter details the proposed framework to develop ad-hoc accelerators for

deep learning applications. At first, the development details and features of the

framework are described. This is then followed by an example utilizing the framework

to accelerate a simple application developed using the PyTorch library, showcasing

the usability and performances of the framework.

4.1 Development
An illustration of the proposed framework is detailed in Figure 11. The

framework consists of four layers, for which brief descriptions are provided below and

further details, where needed, are outlined in the subsections to follow.

Starting from the first layer, which indeed is the core of this system, is the Xilinx

PYNQ-Z1 board (PYNQ, 2018). As mentioned in the previous chapter, the board

consists of the ZYNQ-7000 SoC which houses a Dual-Core ARM Cortex-A9

processor alongside an FPGA, providing a combination of software and hardware

programmability.

The second layer comprises of two software modules being combined for the

first time ever. First of which is the PYNQ OS, which is a Debian-like Linux platform

developed by Xilinx. It comes with many software packages which eases the

development of applications which aim to use both, software and hardware together,

unifying the two halves of the ZYNQ SoC. The second module within this layer is the

NN development library for Python, PyTorch (2018), which was ported onto the

PYNQ OS.

The first two layers will be packaged and provided as an image file to

developers/the community. Whereas, layers three and four describe techniques to

Figure 11 - Framework Structure.

32

apply on top of the first two layers to accelerate an arbitrary NN application. In

particular, the third layer consists of the specifics on how to exploit the available

software packages from layer two to create a hybrid platform combining a PyTorch-

developed NN application with a custom designed hardware accelerator.

Layer four contains the techniques to design the hardware accelerator used in

layer three. This includes information on using the hardware development toolkits

provided by Xilinx, namely, Vivado 2018.2 and Vivado HLS, described in the

previous chapter. Although other methods to design hardware were proposed as well,

using Vivado HLS to develop C synthesis programs was deemed the most appropriate

within the context of this framework.

4.1.1 Environment Setup

To be able to use the PYNQ-Z1 board, the PYNQ OS v2.3 image (PYNQ, 2018)

is flashed onto a MicroSD card and placed into the slot on-board. Proceeding forward,

simply using a web browser to access http://pynq:9090, while being connected to the

same network, will open the standard Jupyter notebook interface. Here, new python

scripts can be developed and tested quickly. Once the access to the board is established

through an SSH client, the steps devised to port PyTorch, together with a test and its

result to verify whether this was successful can be found in Appendix C.

4.1.2 Accelerator Design

Assuming that the critical kernels within the program are known before

proceeding into the design of hardware, some details with respect to the inputs,

outputs, and processing are still ambiguous. Hence, the following are aspects that need

to be studied (for each critical kernel):

1. Inputs:

a. Knowing the source of the inputs will later provide guidance on where

the hardware should be invoked from. This includes performing any

pre-processing codes required. More information on this in the next

subsection.

b. The source will also help in determining the data structure, for example,

if the input is a scalar or an array. If the data is an array, an extension

to this would be to know what the dimensions are. This must be

consistent with how the hardware will be designed.

33

c. Additionally, the input datatype can also be procured, either by

understanding the how the input was generated by the program or by

monitoring the values. For example, if the data is coming from the

output of a function which produces values which have a range from

negative one to positive one, the hardware can be optimized for this.

2. Processing:

a. The information on what needs to be done can easily be obtained

through the documentation, as descriptions of what a particular

function is meant to perform are usually mentioned. The goal of the

accelerator designed will be to match this description. Knowing what

the processing is can also decide what datatype must the output of the

function be.

3. Outputs:

a. Once the accelerator has completed the computations, it must be placed

appropriately so that the application can continue as it would normally.

Furthermore, the location of the post-processing of data must also be

conducted right before this location.

Once all information about a critical kernel has been obtained, developing a

function in software, which mimics its functionality with low-level python commands,

will further increase the knowledge about the kernel and allow an easier process of

porting it into hardware. It further verifies whether or not the technical information is

correct.

Moving on, the hardware can now finally be designed. This process can be

broken-down into two segments: first is where the hardware which mimics the targeted

kernel is designed, and the second is where that hardware, exported as an IP, will be

placed along with other hardware blocks which will help in the communication

between the CPU and FPGA.

For the first segment, as mentioned earlier, Vivado HLS was chosen as the

platform to develop the hardware. This was due to System Generator not having the

capability to communicate large sums of data in and out of the design, which is

typically seen here. Using Vivado HLS involves writing C synthesis code which is

translated into hardware. There are many techniques that are available to improve the

34

performance of the program which are detailed below, however, before doing so, the

first step here would be to port the python function written earlier to mimic the kernel

into a C synthesis program inside the Vivado HLS tool.

When using the tool, a new project must be created. Here, a Top Function name

must be provided along with a C synthesis file which will contain that function. When

invoking this hardware later, this function will be the one to be executed. A tip here

would be to avoid using the name ‘main’ for the function, as it confuses the synthesizer

into thinking that it is the main often seen in a C++ program. The drawback of this is

that the main, when provided inputs, must be in the argument count and argument

vector format, which is not possible here. Moving on, for the Solution Configuration,

the Part Selection will have to be changed into XC7Z020CLG400-1, which selects the

FPGA chip available on the PYNQ-Z1 board.

The inputs and outputs of the hardware accelerator must be the input of the Top

Function. Two of the ways data can be exchanged from the accelerator involve using

either the AXI4-Stream or the AXI4-Lite interfaces. The latter is used when a single

transaction is needed at a time. This includes passing the address of the element each

time the data is exchanged. The former, on the other hand, does not have the concept

of an address other than the base (Xilinx, 2011) and uses the DMA. Here, large arrays

of 32- or 64-bit data can be exchanged at far better bandwidths than the AXI4-Lite

since there is no need to continuously provide addresses and transactions are one-shot.

The transaction must be either of 32- or 64-bit elements is because of the settings on

Vivado, shown later, which allows only the stated widths going on the bus through the

DMA. Although, when using small sums of data, the AXI4-Lite will provide better

results as there will be no need to include the DMA overheads.

In terms of programming, when using the AXI4-Lite, Vivado HLS provides

information of the predefined locations where the accelerator will be reading data

from. Therefore, the Python program will have to simply write/read those addresses.

When streaming data, on the other hand, since the DMA is directly connected to the

accelerator, the program will simply pass contiguous arrays. In reality, the contiguous

arrays are already on the DDR and so the DMA actually passes the base address and

the number of bytes only to the accelerator. Whichever technique is used, to be able to

exchange data from a Python program, an AXI interface must be deployed.

35

When it comes to designing hardware, resources and performance are often

parameters discussed. To enhance these parameters, designers take advantage of the

capability of hardware to have selective fixed-point datatypes at signal-level. In

Vivado HLS, on the other hand, the concept is extended to variable-level. This implies

that individual variables can have unique fixed-point datatypes using libraries

provided by Xilinx. As mentioned earlier, for datatype optimizations, knowing the

dynamic range of the data is vital. Vivado HLS provides developers the option of using

either floating-point or fixed-point datatypes within the design. The former indeed

provides high accuracy results with full-precision computations and eliminates

spending valuable development time in investigating the dynamicity of data. However,

the latter comes with a wide range of advantages, these include, reducing the amount

of logic resources used, reducing the power consumed, and increasing the execution

speed of the hardware (reducing latency) (Finnerty and Ratigner, 2017). By default,

Vivado HLS uses floating-point. But, with the inclusion of specific libraries

demonstrated in the example later, fixed-point datatype can be introduced within the

design, with any configuration, which implies that the developer is given the capability

to choose how many bits to allocate for the integer and fractional parts respectively.

It may seem that the C synthesis program, which natively is sequential

programming, will provide hardware being executed sequentially as well. This,

however, is not the case within Vivado HLS, where the synthesizer is capable to

identify segments which can be executed in parallel and so applies the optimizations.

Different pragmas can be used to activate optimizations within the hardware. These

can be found, with examples on how to use them, in the Xilinx (2019) documentation.

4.1.3 Generating Bitstream

Now when the C synthesis program has been developed and the optimizations

have been applied, the design must be synthesized and exported to Vivado 2018.2 as

an Intellectual Property (IP). To do so, the icons shown in Figure 12 are clicked.

Figure 12 - Steps to export the designed hardware from Vivado HLS to Vivado 2018.2 as an IP.

36

Upon clicking on the Export RTL icon, a pop-up window will provide some

configuration options. The Format is set as IP Catalog whereas, the language is VHDL

instead of Verilog. All boxes should be left unchecked.

Next, a new project is created on Vivado 2018.2. Before doing so, the PYNQ-

Z1 board files are added to the Vivado folder. While creating the project, the PYNQ-

Z1 board should now be visible. Next, the repository where the IP was generated

should be added to the project so that it is available to be utilized.

Moving on, a new block design must be created. The first component to add is

the ZYNQ7 Processing System, along with this, the block automation can also be

executed. The next block to be added is the accelerator exported from Vivado HLS.

Simply searching the Top Function name chosen before will show the IP, if not, the

repository has not been added correctly. Subsequently, the AXI DMA block should

also be added. Before connection automation is done, configure the DMA block, by

double-clicking it, to configure it:

• Uncheck the Scatter Gather Engine.

• Increase the width of buffer length register from 14 bits to 26 bits. This is

changed to allow more data to be transferred in a single transaction (from 214

= 16KB to 226 = 64MB).

Now, the input of the accelerator IP should be connected manually to the

M_AXIS_MM2S port of the DMA. The output of the accelerator should be connected

to the S_AXIS_S2MM port of the DMA. Thereafter, add the high-performance slave

on the ZYNQ7 Processing System, again by double-clicking it, and click on the PS-

PL Configuration page. At this point, extend the HP Slave AXI Interface and enable

the HP0 interface. Run Connection Automation twice.

Before generating the bitstream, using the Address Editor, the range of Data

accessed by the ZYNQ processor must be increased from 64K to 4M. This is shown

in Figure 13 below.

37

Using the Regenerate Layout and Optimizing Route options available in block

design, the connections and placement of blocks will be as efficient as possible. The

block design should now look like the one shown in Appendix D. Before the bitstream

can be generated, from Sources, an HDL wrapper for the block design should be

created (right-click on the correct block design name). The hardware then must also

be exported as a .tcl file (File -> Export -> Export Block Design).

4.1.4 Embedding an Accelerator

Now that the .bit and .tcl files are generated, these should be placed onto the

PYNQ-Z1 board into the same folder as the main python program which will be

executed. Note that these two files (.bit and .tcl) must be the same name. To include

the accelerator within a python program, the Overlay library will be used. In addition,

the DMA block in hardware can also be referenced. An example of this is shown in

the Figure 14 below.

If multiple overlays are used, an additional download input parameter can be

specified (shown in Figure 14), True or False, which can control whether the overlay

bitstream will be downloaded onto the FPGA or not. Next, since the DMA is being

used to transfer data, physical memory needs to be allocated using another module

provided in the PYNQ library shown in Figure 15.

Figure 13 - Increasing the total memory range of the ZYNQ on Vivado 2018.2.

Figure 14 - Using the Overlay library to introduce the designed hardware within the python
program.

38

Once the allocation is complete, the accelerator can finally be provided input

data and the output data can be read once the computation is complete. However, when

using the accelerator, the data being passed can come from various sources. In some

cases, the I/O might be of different sizes and so it might be useful to apply some pre-

/post-processing. Usually, the I/O is kept as row vectors. Furthermore, data passed to

the DMA must a numpy array (NumPy, 2019).

Some useful functions for handling this include, concatenation (torch.cat()),

reshaping (torch.reshape()), obtaining data values only (tensorArray.data) functions

which can be called on tensors. To convert from a tensor to a numpy array or vice

versa, the tensorArray.to_numpy() and torch.tensor(numpyArray) can be used. More

details for these can be found in the documentation.

When the data is converted into a numpy array, it can then be transferred to the

accelerator using the DMA. To do so, the code shown in Figure 16 should be used.

When the receiving channel returns from the function call and the program proceeds,

the result will be found in the out_stream array.

4.2 Utilizing the Framework
As an example, to showcase the usability and performances of the proposed

framework, this section aims to accelerate the basic RNN layer within PyTorch. The

program developed instantiates the RNN layer with 128 input features, 128 hidden

features, and two layers. When an RNN has more than one layer, it can be thought to

have multiple RNN stacked together. An illustration of this is shown in Figure 17.

Then, the program generates two random-valued tensors as inputs to the network, one

of which is the actual input, whereas the other is the initial hidden state (labelled hidden

states in the figure below). On top of these two inputs, the accelerator will also have

Figure 15 - Allocating memory. Done for both input and output of the accelerator.

Figure 16 - Transferring data to the accelerator and waiting for the output
to be complete.

39

to be provided with the weights and biases of the network. The weights, in particular,

are the largest arrays within this context.

For each hidden layer, the following equation must be calculated (taken from the

PyTorch Documentation (2019)):

𝒉𝒉𝒕𝒕 = tanh (𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖ℎ + 𝑤𝑤ℎℎℎ(𝑡𝑡−1) + 𝑏𝑏ℎℎ) (2)

Here, wih and whh are 128x128 matrices. Whereas, xt and h(t-1) are three-

dimensional tensors of size, 1x1x128 and 2x1x128 respectively. The biases, bih and

bhh, are of size 128x1.

The final output of the network will be the output of the second hidden layer.

Note that the input to the second hidden layer will be the output of the first. In addition,

another output of the RNN layer forward pass function call is a combination of both

the outputs from the hidden layers. Indeed, the actual output of the network can be

found within this tensor as well.

The understanding of the inputs, processing, and outputs was straight-forward in

this case. Since the only computational kernel within the program is the RNN layer,

no further profiling was conducted. Advancing forward, the functionality was

mimicked in software, for which the code can be found in Appendix E. In order to

verify the results, the mean-square error of the output tensors was taken. This gave an

error of zero. This is expected as the function uses the same functions in PyTorch as

the original RNN layer would.

Figure 17 - The RNN layer in PyTorch. As seen, there are two hidden layers, 128 input and
hidden features.

40

Moving on, since the inputs to the accelerator were of different sizes, pre-

processing is needed. On top of this, since the accelerator is going to be performing

matrix multiplication, the process of moving from a three-dimensional matrix to a row

vector had to be considered carefully. For simplicity sake, if a 4x4 matrix was to be

converted to a row vector, the transform used is shown in Figure 18, where the values

represent the positions they hold within the row vector.

Now that it is known what the inputs are, how are they going to be fed into the

accelerator, what must be performed on them, and where they must be returned, the

Vivado HLS design is coded. This program can be found in Appendix F. The generic

Vivado 2018.2 block design is followed for this accelerator as well (Appendix D).

Appendix G consists of a program and results which compare the performance

of the CPU against the accelerator. The program is designed such that the accelerator

and the CPU are provided the same inputs and so there is no need to keep track of a

couple of inputs and their respective outputs now (done for quick debugging). The

speedup factor achieved here is about 21 times faster execution (excluding time taken

for pre/post processing) while the mean-square error was about 2.5887x10-6. Although

the error has increased due to the introduction of fixed-point datatype, it is still

minuscule.

The utilization of the designed accelerator is shown in Table 1. These results

indicate that the FPGA chip still has reasonable amount of space for other hardware to

be place as well. The program loops were not able to be further unrolled as this would

not fit the FPGA chip.

Figure 18 - Converting a matrix into a row vector. The value at each position represents what
position the actual value of the matrix would take in the row vector.

Table 1 - Utilization statistics from Vivado 2018.2.

41

 ACCELERATING SAMPLERNN
The following chapter discusses the acceleration of SampleRNN using the

proposed framework. The results of profiling and the analysis of kernels are described

here. Then, the kernels are re-implemented in software. Thereon, details on the Vivado

HLS and Vivado 2018.2 designs are given, as well as the information of the accelerator

integrated into the program to test the overall performance is provided.

5.1 Dependencies
To be able to execute the SampleRNN program, the PYNQ OS is still missing

some packages after porting PyTorch. This is the LibROSA (2018) python package,

which handles music and audio analysis. Yet again this package had to be ported onto

this platform. The step-by-step guide along with a small test made can be found in

Appendix H. Next, the SampleRNN source code can be cloned from the git repository

(Kozakowski et al., 2017) and executed.

When executing the SampleRNN application with the configurations

recommended, it was noticed to have been using the SWAP when the on-board RAM

was falling short. This led to an analysis of what dimension size, which refers to the

number of neurons within each layer, should be set to avoid the application using the

SWAP. Indeed, using the SWAP will further slowdown the application, leading to an

unfair comparison with the accelerator. The top Linux command was used in this case

to monitor statistics referring to the percentage of SWAP used by all processes

running. As a result of doing so, the dimension found was 256 instead of the default

1024. However, when designing the accelerators, due the inputs being large and

therefore not fitting the FPGA chip, the dimension was eventually set to 64. Hence,

the current performance of the application is shown in Table 2 below. The specification

of the machine it was executed on are: Quad-core Intel(R) Core™ i7-6500U CPU at

2.50GHz-2.60GHz (overclocked up to 3.2GHz), 16GB RAM, 4GB NVIDIA GeForce

GTX 960M, running 64-bit Ubuntu 18.04LTS. Along with this, the table also consists

of the performance on the PYNQ-Z1 board with the said dimensions.

42

5.2 Profiling
As mentioned in the methodology chapter, two levels of profiling will be

conducted. First of which will narrow down the search from program-level to function-

level, whereas the second will provide information from function-level down to line-

level.

5.2.1 Top-level Profiling

To conduct the top-level profiling, the program was executed with a sample

length of 16,000 (one second of audio), dimension of 64 and the rest of the default

settings. The profiling results can be found in Appendix I. The kernels which occupy

the most amount of time have also been highlighted in yellow within the results. These

have to be further investigated at line-level to identify the root of the bottlenecks. Some

kernels have not been considered since they are processes within Python which carry

out operations which will be infeasible in hardware. On the other hand, some kernels

either invoke others or are out of the scope of this research and hence are also not

considered.

Within the results, the parameter ncalls represents the number of times a function

is called. Sometimes there are two numbers mentioned here, the first of which is the

number of times invoked whereas the second is how many times the invocations were

non-recursive calls. The tottime suggests the time spent within a certain function

excluding the sub-functions called. The first percall column is simply a division of the

ncalls and tottime. cumtime represents the time elapsed from invocation till exit,

whereas the percall followed by this is the division between cumtime and ncalls. The

last column, labelled filename, provides file location information on the function

which is responsible for the respective statistics shown in that row.

Table 2 - Current performance of SampleRNN with dimension set as 64.

43

5.2.2 In-depth Profiling

The location of the highlighted functions can be taken from the last column of

the top-level profiling in Appendix I. The line profiler developed by Kern (2019) was

additionally installed. The results of line profiling can be found in Appendix J.

5.3 Identifying Bottlenecks and their Analysis
From the results of profiling, it can be deduced that there are multiple kernels

which can be accelerated. Although most of the results seen from both profiling seem

to have functions calling other functions, where those are also seen in the results, this

can be misleading. After identifying such cases, it was found that the two kernels that

could be ported into hardware are, the GRU matrix multiplications and vector

additions, and weight normalisation calculations. Both are further explained below.

5.3.1 Gated Recurrent Unit (GRU)

As mentioned in the Literature Review chapter, GRU refers to mechanisms

which deal with the gradient problems within an RNN. GRUs can selectively store

dependencies from different time instances although it does not contain memory cells

but, instead has variables which store the past hidden states. They are far less

complicated in design and outperform LSTM cells in certain applications (Chung et

al., 2014). The following equations have been taken from the PyTorch GRUCell

Documentation (2019) which describe this kernel:

𝐫𝐫 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐖𝐖𝐢𝐢𝐫𝐫𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐫𝐫 + 𝐖𝐖𝐡𝐡𝐫𝐫𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐫𝐫) (3)

𝐳𝐳 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐖𝐖𝐢𝐢𝐳𝐳𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐳𝐳 + 𝐖𝐖𝐡𝐡𝐳𝐳𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐳𝐳) (4)

𝐧𝐧 = tanh (𝐖𝐖𝐢𝐢𝐧𝐧𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐧𝐧 + 𝐫𝐫 ∗ (𝐖𝐖𝐡𝐡𝐧𝐧𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐧𝐧)) (5)

𝐡𝐡′ = (1 − 𝐳𝐳) ∗ 𝐧𝐧 + 𝐳𝐳 ∗ 𝐡𝐡 (6)

The variable r here refers to the reset gate calculation. This decides whether or

not to store the current hidden state and if any of the already stored states should be

removed. Variable z decides how much of the current hidden state be passed to the

next hidden state. Variable n is the memory variable. Finally, variable 𝐡𝐡′ is the new

hidden state generated based on the previous hidden state input and the new memory

variable, with variable z deciding to what extent should this be done (Mohammadi et

al., n.d.).

The line profiling results which refer to this kernel are the functions GRUCell,

and linear. To generate a second of audio at 16 kHz, these equations had to be

44

computed 2500 times. For the matrix and vector dimensions mentioned below, this

meant that, in total, 61 million multiplications and 62 million additions had to be

performed. For audio at 48 kHz, these values would be three times larger, clearly

showing the number-crunching involved. As seen in the profiling results for GRUCell,

the implementation of the above equations is shown, where about 84.6% of the time

spent in the linear function. This function performs the matrix multiplication (weights

with the input and the hidden state, respectively) and the vector addition (biases).

Meanwhile the CPU can very well handle the calculation of the non-linear functions

(tanh and sigmoid) and variable 𝐡𝐡′.

Henceforth, the focus of this accelerator will be similar to the RNN layers from

the previous section. However, in this case, the matrix multiplication will be on

matrices of size 192x64 (weights) and 64x1 (inputs and hidden state, each). The vector

addition will be between the output of the matrix multiplication, 192x1, and the bias,

which, of course, is also 192x1. The function which mimics this behaviour was not

needed as the RNN layers verified the functionality earlier.

As for the inputs, these can be fetched from the GRUCell function itself. The

output can be placed into variables called, gi and gh (shown in the line profiling).

Doing so will allow the program to continue with execution as it would normally. On

the downside, there does not seem to be a way to have multiple invocations of this

function so that multiple hardware blocks can be placed to have parallel execution of

this kernel. This is due to the fact that this kernel is not explicitly called and nor is

there a way to continue execution without having the result.

5.3.2 Weight Normalisation

Weight normalisation, as the name suggests, normalizes the weights within the

NN, by decoupling the weight magnitude (g) from the direction (v). The equation

which describes this behaviour, taken from the PyTorch Documentation (2018b), is

shown here:

𝐖𝐖 = 𝐠𝐠
𝐯𝐯
‖𝐯𝐯‖

 (7)

For three-dimensional tensors, the magnitude/norm is calculated per layer. For

instance, if the tensor is of size 64x64x1, the magnitude will be the square-root of the

45

sum of the squared 64 elements in each layer. This will result in a 64x1x1 tensor which

will be multiplied, element-wise, with g, which must also be 64x1x1.

This computational kernel occupies up to 68% of the execution time as seen in

the top-level profiling results and proves to be a critical aspect within SampleRNN.

The functions which represent this kernel are compute_weight, and _norm. The inputs,

g and v, both can be found within the compute_weight function and the output, w, is

the return parameter of the function. The sizes of the for the inputs are slightly more

complicated than seen previously. Input dimensionality can vary significantly, as

shown in Table 3, which indicates that some dimensions barely occur, and thus these

are not considered for hardware implementation. In addition, the accelerator for

dimension 64x256x16 do not fit on the FPGA chip. Therefore, hardware is only

designed for dimensions, 64x64x1 and 256x64x1, which is compliant with Amdahl’s

Law by making the common/frequent case faster. All in all, three million square-roots,

three million divisions, 330 million multiplications, and 165 million additions, on

average, had to be conducted to generate one second of audio at 16,000Hz.

The python program which mimics the functionality is shown in Appendix K.

This implementation is for any arbitrary size.

5.4 Hardware Design & Integration
Now that all the information about what needs to be ported into hardware has

been accumulated, the accelerators are designed in Vivado accordingly. The

subsections below outline design practices that were followed. And then finally the

accelerator specifications are mentioned.

Table 3 - The different dimensions the input v and g can take.

46

5.4.1 Using the AXI Stream

Since large sums of data will be transmitted, the AXI Stream interface is the

most efficient way to do so for reasons mentioned previously. To configure, and

read/write data using this, an example is provided in Figure 19 below:

As seen in the figure above, the AXI Stream items come into the program as a

structure of type datatype. This contains a data element, of type float, and a flag which

indicates whether this item is the last or not. The default structure used also contains

other signals, however, using the above two can provide all functionality needed. Next,

in order to inform the compiler that the I/O are a stream, the pragmas seen in lines 10-

12 are used. Once this is complete, the data can now be accessed within the body of

the function. In the example above, the output is the input incremented by one.

In addition, the structure, datatype, does not necessarily need to have float but,

it must either be 32-bit or 64-bit wide standard C/C++ types. Another rule when using

AXI Stream is that the stream cannot be read/written out of order. Further, writing

must also be done within a loop which consists of only writing out data, else it is taken

as an irregular pattern, which is prohibited.

5.4.2 Fixed-point Datatype

Currently, the example shown in Figure 19 uses floating-point datatype

throughout the program, which is considered having FIX_32_23 (IEEE, 2008).

Knowing the dynamic ranges of the I/O here becomes essential to eliminate any extras

being used. For instance, if the input has values ranging from -10 to 10, assigning 8

Figure 19 - AXI Stream example on Vivado HLS.

47

bits for the exponent is inefficient. Instead, providing five bits will give the same

functionality. Although, for such a simple example, performances are not greatly

improved, in the actual accelerators designed for SampleRNN, employing fixed-point

datatype makes the hardware up to twice as fast as it opens a gateway to a new set of

specialised libraries dedicated for fixed-point operations. An example of how fixed-

point datatypes can be used within the previous example is shown in Figure 20 below:

The ap_axi_sdata.h library is already available within the Vivado HLS

environment. To use it, a new type must be defined, this must be either ap_fixed<W,

I> for signed or ap_ufixed<W, I> for unsigned, where W is the total width of the type,

and I is the is number of bits from the total used for the exponent part. There are no

limitations as to how many datatypes can be created, and so the design can incorporate

multiple types and simply cast the signals to convert it.

5.4.3 Enhancing Computations

Now that the data is flowing through the AXI Stream, and the datatype has been

casted to fixed-point, it is time to implement the computational kernel in hardware. To

further speedup the kernels, the hls_math.h library can be utilized when dealing with

fixed-point mathematical operations. A full list of available functions can be found in

the Xilinx UG902 (2018c, p. 902) documentation, under section ‘The HLS Math

Library’. An example of this is shown in the Figure 21 below.

Figure 20 - Inclusion of fixed-point datatype in Vivado HLS. Highlighted in blue are the
changes from the previous snapshot.

48

In particular, the two most useful directives for any type of accelerator is the

pipeline and unroll directive, which is only used within loops of a program.

Pipelining is a technique which aims to increase parallelism by beginning

execution of another instruction before the previously issued one is completed. Figure

22 illustrates the difference between a loop which has not been pipelined and one

which has with Initiation Interval (II) equal to one. The II refers to the number of clock

cycles that must kept between instructions being issued.

Figure 21 - Highlighted in blue are changes made to include the tangent mathematical function.

49

For the example in Figure 22, if the II was set as four, the program would be

executing sequentially. An example of the II equal to two is shown in the Figure 23

below. The larger the II value, the more it moves towards sequential execution.

Figure 24 demonstrates how to incorporate the pipeline directive in Vivado HLS.

When included, a speedup factor of about just over four times was achieved when

compared to without using the directive within this simple example.

Figure 23 - Pipeline with II equal to 2. Taken from Xilinx (2019b)

Figure 22 - (A) Illustrates the program at the top of the figure being executed sequential like
any other C/C++ program loop. (B) The very same program is shown but now with the pipeline

directive being used with the initiation interval equal to one. (Figure taken from Xilinx
documentation (2019b).

50

On the other hand, unrolling is another technique where parallelism is taken to

a greater extent than seen in pipelining. In pipelining, the II cannot be less than one.

Unrolling is equivalent to pipelining but with the II set to zero, which implies that all

instructions within a loop will be executed in parallel. The concept can be visualized

in Figure 25.

The unrolling factor refers to the number of times the loop will be unrolled. The

compiler, when provided this directive, copy-pastes the body of the loop a certain

Figure 24 - Pipelining in Vivado HLS.

Figure 25 - The difference between executing a program with and without unrolling. Figure
taken from NECST Lab @ Politecnico di Milano (2018)

51

amount of times (factor) and then execute all those instructions in parallel. Therefore,

unrolling with a large factor can lead to a situation where there is no more space

available on the FPGA. This is due to the multiple resources needed to execute

instructions in parallel unlike in pipelining where the resources are shared.

The unrolling directive can be utilized within Vivado HLS as shown in Figure

26. The unrolling factor must be a factor of the total number of times the loop will

execute. Although Vivado HLS will allow numbers which are not factors, there are no

advantages of doing so, as it means that towards the end of the loop execution, there

will be empty slots which provide no difference to performances. If the unroll factor

is not provided, the synthesizer unrolls the loop completely.

In some scenarios, however, these directives may fail to be applied by the

synthesizer. This usually occurs for a couple of reasons. First of which could be due

to dependencies, either among instructions within the body of the loop or loop-carried.

Or there might be a scheduling problem, which may occur due to resources being

utilized by another command (seen in pipelining). In some cases, common to unrolling,

the FPGA chip may not have any more resources on-board and thus will fail in creating

the bitstream in the next stage. Unrolling the inner most loops is always done.

Figure 26 - Unrolling in Vivado HLS.

52

Wherever possible, unrolling was preferred over pipelining as performances are much

better.

5.4.4 Accelerator Specifications

There are in total four accelerators which were developed. First of which is the

GRUCell, the program code can be found in Appendix L. Second is the weight

normalisation for v of size 64x64x1, code shown in Appendix M. The third accelerator

is once again, weight normalisation but with v of size 256x64x1, code shown in

Appendix N. Finally, an accelerator which handles a combination of both the stated

weight normalisation dimensions, the program for which is still the same as the

previous ones but with slight modifications to the unrolling factors to allow the designs

to fit together.

As for the accelerator which consists of the combination of two dimensions for

weight normalisation, priority was given to the larger dimension to use more space as

the CPU struggles to perform matrix multiplication for larger sizes than smaller ones.

In addition, the Vivado 2018.2 design for this accelerator varies slightly as there exists

two DMAs. This has been shown in Appendix O. Each DMA is assigned an equal

share of the total 4GB from the Address Editor, used previously. As for the Vivado

2018.2 designs for the other accelerators, no changes were made from the generic

design discussed earlier (Appendix D).

When it comes to embedding the accelerators within SampleRNN, the exact

same concept was used as shown in the RNN layer example. No accelerator was used

together as the time to download a new bitstream on the FPGA chip takes exactly

400ms according to the work done by Hao and Quigley (2017).

53

 RESULTS & ANALYSIS
Within this chapter, the performance of the accelerators embedded within

SampleRNN are presented and analysed.

At first, line profiling was conducted for each individual accelerator, results for

which have been tabulated. Since various versions of the accelerator were investigated

on, the tables showcase these in order of development but the fastest among the lot

being further analysed. The metrics shown are defined as follows: The CPU Time

Taken refers to the amount of time taken by the CPU to compute the exact processing

as what the accelerator was designed to do. The Pre-process Time is the amount of

time spent in making the data appropriate to be passed onto the DMA. DMA Time

accounts for the transferring and waiting times while using the DMA API. The Post-

processing Time refers to time spent within commands to bring back data into a form

which can be used by the program again. Total Time is the addition of the pre-

processing, DMA, and post-processing times. Total Block Time HW refers to the total

time spent in the kernel after adding the hardware whereas, Total Block Time SW is

GRUCell function when using only the CPU. Block Speedup is kernel on CPU divided

by kernel on hardware execution times. Function Speedup is the ratio between CPU

Time taken and DMA Time. Next, the Accelerator Time for calculation column

specifies the amount of time estimated by Vivado HLS simulation, which only for the

processing of a single call of the accelerator (without stream I/O). Note that during

execution, there are multiple calls to the accelerator. The Total Accelerator Time is

another simulation result by Vivado HLS but for the complete design. The last two

columns are ratios between the CPU Time Taken and the values simulated by Vivado

HLS for the processing only and the complete program, respectively. Since the values

in Vivado HLS are for a single execution, the CPU Time Taken was divided by the

number of times the function was called.

Table 4 contains the results for GRUCell. Two major versions of this accelerator

were developed. As seen in the table, the speedup attained is 0.45x. This of course

implies that the kernel has ultimately slowed down. However, the simulation results

provided by Vivado HLS indicate that the processing was conducted almost 9.6x faster

than the CPU, with an overall speedup of 2.55x. To identify what has caused the

hardware to slowdown, a pie chart is shown in Figure 27. It seems that the majority

54

amount of time is spent in pre-processing, which is already twice the time taken by the

CPU to complete the execution. The mean-square error for this accelerator was 1.8602

x10-7, providing high accuracy as the fixed-point datatype was set to FIX_32_16.

Moving on, the results of the three accelerators for weight normalisation have

been shown in Table 5. Once again, different design improvements were made for the

same accelerator, this involved improving unrolling factors and software

optimizations. The speedup factor for weight normalisation for 64x64x1, 256x64x1,

and the combination of the two are 0.91x, 0.97x, and 0.94x, respectively. On the other

hand, the simulation speedup for these were 15.59x, 11.20x, and 5.99x, respectively.

As for the accuracy of the accelerators, the mean-square error is 0.1974 for all. Once

again, the accelerator has slowed down the execution speed. The timing breakdown of

the three accelerators is shown in Figure 28. The breakdown clearly shows that the

accelerator is being overshadowed by the pre/post-processing once again.

Table 4 – Performance metrics for GRUCell accelerators.

Figure 27 - GRUCell timing breakdown.

55

Moreover, in all accelerators designed, the simulation results do not replicate

when embedded within the python program. When embedding the accelerators, a new

bottleneck in the system is observed. This includes the pre/post-processing to format

the data, as well as the DMA. On average, with respect to the total time spent when

Table 5 - Performance metrics for Weight Normalization accelerators.

Figure 28 - Weight Normalization timing breakdown.

56

using the accelerator, the pre-processing accounts for 36.1%, whereas post-processing

amounts to 28.8%. Further understanding of the DMA API may be important as the

transfer and wait functions do not matching the simulation results. The transfer simply

forwards the physical address of the contiguous array created at first in pre-processing,

yet it consumes a significant amount of execution time. The wait function stops the

program from proceeding until the data is received from the accelerator. It is unclear

whether the hardware begins as soon as transfer function is called or when wait has

started. To further investigate the above issue, Table 6 provides a comparison of the

simulation results and time spent within the transfer and wait functions. Clearly, when

utilizing the DMA API, hidden latencies are seen, which must be discovered and

improved as future works, in order to further enhance the framework.

Table 6 - Comparison of DMA API with simulation results.

57

 CONCLUSIONS
Sound synthesis is a technique whereby analog or digital circuits are used to

generate sound. There are many different types of synthesizers, such as the simple

traditional ones where periodic waveforms are generated at different frequencies, and

more complicated ones, such as physical modelling, where mathematical models are

developed to mimic instruments and other acoustic bodies. Research has led to

efficient algorithms which mainly aim to reduce the number of high-quality

waveforms produced or completely nullify waveforms due to lack of difference in

perceived audio.

NNs are computational structures which contain neurons organized within

layers. This forms a mesh network with weighted connections, a bias inside each

neuron along with a non-linear thresholding function. When a NN is trained with audio

data, it is able to produce related sound in a unique pattern. This has led to NNs being

utilized as sound synthesizers. However, any NN typically requires heaps of

calculations to be processed before producing a single output, which poses as a

challenge within sound synthesis. To produce high-quality sound, at least 16,000

samples per second are needed, where state-of-the-art models have provided barely

450 samples per second on a high-end PC. This implies the need for an accelerator to

speed up the kernel.

Literature has shown that FPGA based accelerators for NNs have exemplary

performances. These are reconfigurable hardware which perform any function a

developer designs it for, providing parallel computational capabilities. Although not a

common choice among developers due to expert design knowledge required, this work

presents a framework which uses the Xilinx PYNQ-Z1 board to ease the development

process. A standard RNN layer was accelerated by 21 times using the framework,

showing promising results. On the other hand, an RNN based sound synthesizer,

SampleRNN, is also accelerated. The program was profiled at first, where bottle-necks

were identified to be two kernels related to GRUs and weight normalisation. These

were redesigned using hardware on the FPGA, aiming to accelerate the computation.

The design is one-of-a-kind hybrid model which uses both CPU and FPGA.

SampleRNN was not accelerated as per the goal set initially which was about 10 times

however, simulation results did illustrate the performance of the hardware providing

58

speedup factors from 9.96x to 15.59x. As for future works, a far more efficient method

to transfer data to the hardware must be investigated upon. Since when embedding the

accelerator, instead of eradicating the bottlenecks, new ones were created in the form

of pre/post-processing and the DMA API. On average, pre-processing accounts for

36.1% of accelerator execution time whereas the post-processing occupies 28.8%.

Furthermore, at times, the PYNQ-Z1 board FPGA fell short on space, which made the

hardware compensate, hence a larger FPGA size may also be investigated on PYNQ

boards. Lastly, a kernel not investigated in SampleRNN were the convolutional layers

within the lower tiers as it was out of the scope of this research but indeed it still

remains as a bottleneck to be investigated as future works.

59

 REFERENCES
Chang, A.X.M., Martini, B., Culurciello, E., 2015. Recurrent Neural Networks

Hardware Implementation on FPGA. ArXiv151105552 Cs.
Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock, M.,

Hasegawa-Johnson, M., Huang, T.S., 2017. Dilated Recurrent Neural
Networks. ArXiv171002224 Cs.

Chung, J., Gulcehre, C., Cho, K., Bengio, Y., 2014. Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling. ArXiv14123555 Cs.

Digilent Inc, 2018. PYNQ-Z1 Reference Manual [Reference.Digilentinc] [WWW
Document]. URL https://reference.digilentinc.com/reference/programmable-
logic/pynq-z1/reference-manual (accessed 9.29.18).

Finnerty, A., Ratigner, H., 2017. Reduce Power and Cost by Converting from Floating
Point to Fixed Point.

Graves, A., 2013. Generating Sequences With Recurrent Neural Networks.
ArXiv13080850 Cs.

Guan, Y., Yuan, Z., Sun, G., Cong, J., 2017. FPGA-based accelerator for long short-
term memory recurrent neural networks, in: 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC). Presented at the 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC), IEEE, Chiba,
Japan, pp. 629–634. https://doi.org/10.1109/ASPDAC.2017.7858394

Hao, Y., Quigley, S., 2017. The implementation of a Deep Recurrent Neural Network
Language Model on a Xilinx FPGA. ArXiv171010296 Cs.

Hind, N., 2018. Physical Modelling Synthesis [WWW Document]. URL
https://ccrma.stanford.edu/software/clm/compmus/clm-tutorials/pm.html
(accessed 11.17.18).

Huynh, T.V., 2017. Deep neural network accelerator based on FPGA, in: 2017 4th
NAFOSTED Conference on Information and Computer Science. Presented at
the 2017 4th NAFOSTED Conference on Information and Computer Science,
pp. 254–257. https://doi.org/10.1109/NAFOSTED.2017.8108073

IEEE, 2008. 754-2008 - IEEE Standard for Floating-Point Arithmetic - IEEE Standard
[WWW Document]. URL https://ieeexplore-ieee-
org.ezproxy.uow.edu.au/document/4610935 (accessed 3.29.19).

Imperial College London, 2018. Fourier Series [WWW Document]. Fourier Ser. URL
http://wwwf.imperial.ac.uk/metric/metric_public/fourier_theory/series/fourier
_series.html (accessed 11.17.18).

Intel®, 2018. Intel® FPGAs Powering Real-Time AI Inferencing [WWW Document].
Intel AI. URL https://ai.intel.com/intel-fpgas-powering-real-time-ai-
inferencing/ (accessed 9.29.18).

ITU, 2016. P.800.1 : Mean opinion score (MOS) terminology [WWW Document].
URL https://www.itu.int/rec/T-REC-P.800.1 (accessed 12.7.18).

Johnson, J., 2017. Lecture 10 | Recurrent Neural Networks.
Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E.,

Stimberg, F., Oord, A. van den, Dieleman, S., Kavukcuoglu, K., 2018.
Efficient Neural Audio Synthesis, in: ArXiv:1802.08435 [Cs, Eess].

Kern, R., 2019. Line-by-line profiling for Python. Contribute to rkern/line_profiler
development by creating an account on GitHub.

60

Kozakowski, P., Kańska, K., Rishaug, J., 2017. PyTorch implementation of
SampleRNN: An Unconditional End-to-End Neural Audio Generation Model:
deepsound-project/samplernn-pytorch. DeepSound.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D., 2018. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data
collection. Int. J. Robot. Res. 37, 421–436.

Li, F.-F., 2017. Lecture 4 | Introduction to Neural Networks.
LibROSA, 2018. LibROSA — librosa 0.6.2 documentation [WWW Document]. URL

https://librosa.github.io/librosa/ (accessed 12.4.18).
McCulloch, W.S., Pitts, W., 1943. A logical calculus of the ideas immanent in nervous

activity. Bull. Math. Biophys. 5, 115–133.
https://doi.org/10.1007/BF02478259

Mehri, S., Kumar, K., Gulrajani, I., Kumar, R., Jain, S., Sotelo, J., Courville, A.,
Bengio, Y., 2016. SampleRNN: An Unconditional End-to-End Neural Audio
Generation Model.

Mohammadi, M., Mundra, R., Socher, R., n.d. CS 224D: Deep Learning for NLP.
Narang, S., Elsen, E., Diamos, G., Sengupta, S., 2017. Exploring Sparsity in Recurrent

Neural Networks, in: ArXiv:1704.05119 [Cs].
Nave, R., 2018. Sensitivity of Human Ear [WWW Document]. URL

http://hyperphysics.phy-astr.gsu.edu/hbase/Sound/earsens.html#c2 (accessed
12.7.18).

NumPy, 2019. NumPy — NumPy [WWW Document]. URL http://www.numpy.org/
(accessed 4.2.19).

Oh, K.-S., Jung, K., 2004. GPU implementation of neural networks. Pattern Recognit.
37, 1311–1314. https://doi.org/10.1016/j.patcog.2004.01.013

Oktay, O., Ferrante, E., Kamnitsas, K., Heinrich, M., Bai, W., Caballero, J., Cook,
S.A., de Marvao, A., Dawes, T., O‘Regan, D.P., others, 2018. Anatomically
constrained neural networks (ACNNs): application to cardiac image
enhancement and segmentation. IEEE Trans. Med. Imaging 37, 384–395.

Oord, A. van den, Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., Kavukcuoglu, K., 2016. WaveNet: A Generative
Model for Raw Audio. ArXiv160903499 Cs.

Paine, T.L., Khorrami, P., Chang, S., Zhang, Y., Ramachandran, P., Hasegawa-
Johnson, M.A., Huang, T.S., 2016. Fast Wavenet Generation Algorithm.

PYNQ, 2018. PYNQ - Python productivity for Zynq [WWW Document]. PYNQ -
Python Product. Zynq. URL http://www.pynq.io/home.html (accessed
12.7.18).

Python Documentation, 2018. The Python Profilers — Python 3.7.1 documentation
[WWW Document]. URL
https://docs.python.org/3/library/profile.html#module-profile (accessed
11.16.18).

PyTorch, 2018a. PyTorch [WWW Document]. URL https://www.pytorch.org
(accessed 9.30.18).

PyTorch, 2018b. torch.nn — PyTorch master documentation [WWW Document].
URL https://pytorch.org/docs/stable/nn.html#weight-norm (accessed 12.4.18).

PyTorch Documentation, 2019. torch.nn — PyTorch master documentation [WWW
Document]. URL https://pytorch.org/docs/0.4.1/nn.html#rnn (accessed
4.2.19).

61

PyTorch GRUCell Documentation, 2019. torch.nn — PyTorch master documentation
[WWW Document]. URL https://pytorch.org/docs/0.4.1/nn.html#grucell
(accessed 4.5.19).

Raghuvanshi, N., Lauterbach, C., Chandak, A., Manocha, D., Lin, M.C., Lin, M.C.,
2007. Real-time Sound Synthesis and Propagation for Games. Commun ACM
50, 66–73.

Rise, S., 2014. Wavetable Synthesis | The Synthesizer Academy [WWW Document].
URL http://synthesizeracademy.com/wavetable-synthesis/ (accessed
11.17.18).

Schwarz, D., 2007. Corpus-Based Concatenative Synthesis. IEEE Signal Process.
Mag. 24, 92–104. https://doi.org/10.1109/MSP.2007.323274

Serra, X., 2007. State of the Art and Future Directions in Musical Sound Synthesis, in:
2007 IEEE 9th Workshop on Multimedia Signal Processing. Presented at the
2007 IEEE 9th Workshop on Multimedia Signal Processing, pp. 9–12.
https://doi.org/10.1109/MMSP.2007.4412805

Smith III, J.O., 2018a. Additive Synthesis (Early Sinusoidal Modeling) [WWW
Document]. URL
https://ccrma.stanford.edu/~jos/sasp/Additive_Synthesis_Early_Sinusoidal.ht
ml (accessed 12.7.18).

Smith III, J.O., 2018b. Basics of Digital Waveguide Modeling [WWW Document].
URL
https://ccrma.stanford.edu/~jos/swgt/Basics_Digital_Waveguide_Modeling.ht
ml (accessed 10.24.18).

Stanford University, 2018. Unsupervised Feature Learning and Deep Learning
Tutorial [WWW Document]. URL
http://deeplearning.stanford.edu/tutorial/supervised/ConvolutionalNeuralNet
work/ (accessed 12.7.18).

TensorFlow, 2018. TensorFlow [WWW Document]. TensorFlow. URL
https://www.tensorflow.org/ (accessed 10.1.18).

Tian, Y., Pei, K., Jana, S., Ray, B., 2018. Deeptest: Automated testing of deep-neural-
network-driven autonomous cars, in: Proceedings of the 40th International
Conference on Software Engineering. ACM, pp. 303–314.

Vivado, 2018. Vivado Design Suite [WWW Document]. URL
https://www.xilinx.com/products/design-tools/vivado.html (accessed
9.29.18).

Wyse, L., 2018. Real-valued parametric conditioning of an RNN for interactive sound
synthesis.

Xilinx, 2019. HLS Pragmas [WWW Document]. URL
https://japan.xilinx.com/html_docs/xilinx2017_4/sdaccel_doc/okr150403436
4623.html (accessed 3.30.19).

Xilinx, 2018a. What is an FPGA? Field Programmable Gate Array [WWW
Document]. URL https://www.xilinx.com/products/silicon-devices/fpga/what-
is-an-fpga.html (accessed 12.8.18).

Xilinx, 2018b. Vivado Design Suite User Guide: High-Level Synthesis (UG902).
Xilinx, 2011. AXI Reference Guide 13, 82.

62

APPENDIX A REVISED PROJECT PROPOSAL

1. Candidate Details

Name: Manohar Vohra

Student No: 5265071

Supervisor: Dr. Stefano Fasciani

Title of Project:
Hardware Accelerator for Recurrent Neural Network-based Sound Synthesis

Brief Overview:
Recently, Google has introduced WaveNet, which uses Neural Networks (NNs) for raw audio signal generation
[1], [2]. The combination of NNs with sound synthesis implies that machines are trained with millions of audio
examples allowing them to learn and synthesize sound as speech or music at single sample level. Although
optimization efforts have been considered through different algorithms and hardware previously (i.e. Graphics
Processing Units) [3]–[10], none are capable of performing synthesis in real-time.

Using hardware accelerators to speed up a NNs computation is an upward trend in recent years [8]. This project
aims to design a hardware accelerator to speed up the computation of a recurrent neural network (RNN) used in
sound synthesis. In particular, this project will introduce a framework profiling the computational load of existing
RNN applications and replace the critical functions with dedicated hardware synthesized on a Field Programmable
Gate Array (FPGA). While RNNs are well-known for sequential-based learning [11]–[14], the challenge here would
be that such a network cannot generate audio at the pace required since the samples are generated one at time.
Previously, other applications have used FPGAs to accelerate NNs [15]–[17], providing promising results, which
is aimed to be replicated within this application context.

63

2. Project Description:
Sound synthesis is a technique to generate raw audio waveforms using computer hardware/and or software [18]
seen in many applications such as text-to-speech (TTS), video games, films, music, electronic musical
instruments, etc [19]–[22]. Most of these real-world applications require sound synthesizers to operate under real-
time constraints, which indeed includes being fast. A typical example here is Granular Synthesis, which was only
adopted once it was real-time [23]. Moreover, for consumer applications it is also important to be cost-effective
and maintaining reasonable power consumption [24].

A Neural Network (NN) is an architecture containing layers of neurons, namely input, hidden, and output layers.
These are interconnected together to form a mesh network, where each connection has a weight associated with
it. The weights are multiplied with the input to this connection and given to the next neuron. Neurons contain non-
linear activation functions with thresholds which indicate whether or not a certain characteristic has been identified
from the input [25]–[27]. The threshold (bias) and weights are adjusted during training periods, to be able to give
the maximum accuracy possible to the output. The aim of training the network is to present a large set of inputs
along with the desired output, and allow the machine to be able to estimate a model embedded in the training data
[28], [29].

The problem being addressed within this project remains unchanged from ECTE451, where there exists a lack of
research investigating how recurrent-neural-network-based sound synthesizers can be implemented for real-time
applications. Through work already completed thus far, it is only further deduced that such systems are yet to be
real-time. Within the implementations seen in [2], [4], [30] and others, credible results have been achieved in terms
of functionality. But, in order to be real-time oriented, these systems need to take into account the speed of
generating audio, whilst operating within the limited resource constraints. If such systems with these capabilities
were to be implemented using computers of today, they would require an accelerator on an Application Specific
Integrated Chip (ASIC) alongside the CPU, which is not feasible. Instead, the accelerator can be designed and
implemented on an FPGA, which provide flexibility and high computational power [31]. Although FPGA design is
challenging, the proposed framework integrates an existing deep learning programming environment with FPGA
deployment tools. This simplifies designing and deploying accelerators for NNs, allowing developers to implement
and evaluate application-specific accelerators.

The framework will be based on the Xilinx PYNQ-Z1 board [32]. The Systems on Chip (SoC) uniquely provides a
single platform solution containing both a microcontroller, and an FPGA. Integration between the programmable
(microcontroller) and reconfigurable (FPGA) components is done through a concept of a software library labelled
as Overlays. In conjunction with a powerful Python developing environment and Debian-like Operating System,
the board places itself perfectly for the purpose. The board has been used to accelerate Deep Recurrent Neural
Networks (DRNN is a NN with multiple hidden layers) in literature [31]. What the authors of this paper have failed
to take into account is one of the most competitive NN libraries, PyTorch [33]. This thesis will also be the first to
execute PyTorch-written code on the PYNQ-Z1, which is expected to open a gateway of new applications and
their enhancements proving the significance of this work.

Below are the objectives and outcomes of this work. Note that the points in italic are to be completed within the
session, whereas the remaining have already been completed in the previous session.

Objectives of this project:

1. To interpret an existing RNN-based sound synthesizer by top-level profiling, leading to the
identification of computationally demanding kernels. (Completed)

o Illustrate how slow current RNN-based sound synthesizers are. (Completed)
o This objective is extended to also include the line profiling of those kernels flagged by the

top-level profiling to be system bottlenecks. The need for such in-depth profiling had been
discovered through the research work conducted thus far, as doing so will allow further
understanding as to what should be modelled in hardware later. (Completed)

2. Compose a computationally efficient architecture for the RNN kernel.
3. Develop a framework to evaluate and test the RNN-based synthesis acceleration. Notably:

o Port (compile and execute) an existing deep learning environment on an FPGA-based
platform.

o Model the designed architecture on an FPGA.
o Create a new program flow by integrating the CPU and FPGA computations together.

Outcomes of this project:

1. Profile an existing RNN based sound synthesis and identify the modules presenting high
computational cost. (Completed)

2. Design and implement such modules as an FPGA-based accelerator integrated in a computing
system.

3. Assess the performance of the RNN based sound synthesis running with and without accelerator.
4. Develop a framework which enhances performance of RNN-based algorithms by integrating custom

accelerators for FPGA in an existing deep learning programming environment.

64

3. Project Plan:
Within the scope of this project, a hardware accelerator will be designed on an FPGA for sound synthesizers which
utilize RNNs. The aim here would be to improve the speed and resource usage after performing detailed analysis.
Since projects may encounter various dead ends, listed below are methods (preference-wise) which are devised
as contingency plans. Based on the work completed in the previous session, Method 1, which was the most
preferred method, will be the plan which will be followed. The reasoning behind this selection is due to the
successful installation of PyTorch on the chosen platform. Again, the work to be completed within this session are
in italic.

• Method 1
o PyTorch must be successfully installed. (Completed)
o Compile a sound synthesizer which uses RNNs, for instance SampleRNN [11]. (Completed)
o Test the speed, power and accuracy currently achieved on the board. (Completed)
o Identify what needs to be accelerated. This will be conducted by two layers of profiling.

(Completed)
 Top-level: profiling the code using software tools with details only provided at

function level. (Completed)
 In-depth: once the demanding functions are identified, they will be profiled at line-

level. (Completed)
o Analyse whether that operation/s can be designed on an FPGA. Must answer the following:

 Where are inputs coming from? This will help in identifying on which data will the
operations be performed on as well as their datatype.

 What processing is to be conducted? Involves studying what all do the above
inputs undergo to attain the outputs.

 Where should the outputs be placed? Once the hardware processes the input
data, where must this be placed to continue the program flow.

 Feasibility of the kernel will depend on these three factors above.
o If feasible, proceed with designing. Else, look for another operation which also consumes

time, and attempt to accelerate that.
o Test the new system.
o Compare if a difference in performance is positive or not. If it is not positive, revert to design

phase.
o Create a general framework for designing the accelerator. This will include what operations

can be accelerated, the workflow involved, and generic designs proposed.
o Finally, make the findings available to the community.
o As for the developed hardware/software in this method, the hardware is soft-core, meaning

inside the FPGA, plus, there will also be a C++ program which will be converted to hardware
using specialised software tools. Further, code alterations may also be done for the selected
existing application so as to meet the budget constraints (i.e. if the model is very large to
design on the FPGA, the size will be reduced).

• Method 2 (No longer considered)
o If PyTorch does not successfully compile on the PYNQ-Z1 board, another famous NN library

will be utilised, known as TensorFlow [34]. PyTorch is simpler to use and easy for
researchers to work with although TensorFlow is competitive as well and has been compiled
on the PYNQ-Z1 previously [35], [36].

o The same steps will then be followed as before but applications written with TensorFlow will
be selected.

• Method 3 (No longer considered)
o Another option is to continue using PyTorch, but instead of running it on the PYNQ, it will be

executed on another board, preferably the Raspberry Pi 3 B+.
o Now then, there are a few differences in the architecture of the framework proposed within

this method. The application will be running on the Pi instead of the PYNQ, however, after
finding out the bottle-necks within the application, the FPGA will be designed on the PYNQ,
and utilizing communication through the internet, the inputs/outputs can be shared with the
Pi.

o Hence, the execution will be as such, the Pi will run the program. When it reaches the
segment found to be slow, it will send the inputs required to the PYNQ and the FPGA will be
processing the inputs. Finally, the outputs will be sent back to the Pi and it will continue to
execute the code.

o During analysis of performance, the communication latency will be disregarded.
o In addition, a new software will be programmed to handle the communication mappings.

The strategy of using FPGAs has been exploited here due to their promising results in previous findings. For
instance, in [16], the author uses an FPGA to accelerate a Convolutional Neural Network (CNN). The design here
somewhat resembles the system proposed within this project, though, instead of obtaining data from a memory
chip, the data in this research is going to fed by the CPU. A gap in this paper would be that it lacks to maximize
the parallelism within process two and three, as it performs these in a sequential manner. Even though utilization

65

rates were not quite as high, performances were far better than CPU and GPU execution, which proves the
effectiveness of FPGAs.

In contrast to the previous paper, [15] has accelerated a DNN. As opposed to a CNN, a DNN requires far more
computation, which might explain the difference in utilization rates. Note that the system architecture presented
here has no CPU once again. Moreover, the paper proposes a forward propagation of the network in a sequential
manner, which, again, can affect the speed, and is found to be a gap. It is worth mentioning that the design
proposed here is compact and simple, although better performances have been achieved.

Another key paper [31] proposes an accelerator on the PYNQ-Z1 board. The paper has provided a methodology
with components proposed here, attaining up to twice the speed of a GPU. A point to consider here is that the
model creates the complete network on the FPGA but fails to utilize the CPU on-board (only used for training).

The model proposed for this research project will run as a hybrid, exploiting both the CPU and the FPGA. What
the above stated papers lack is the execution time as comparison, which will be a key attribute when comparing
models to understand real-time compatibility. Hence, results will be measured by recording how long it has taken
to execute the program without the accelerator and then with the accelerator. In order to validate the
implementation, we compare data processed by the accelerator against the data processed by the CPU. As the
accelerator is implemented in fixed point architecture, we need to ensure that there is sufficient accuracy in the
generated result. As an additional result, comparisons with GPU and CPU execution will also be considered.

On the other hand, it is noteworthy to say that the proposed framework will not be speeding up the training period.
Training periods are usually time-consuming however, this can be done before deployment of the application and
so will not have an effect on the run-time performance (although accuracy depends on how well trained the net is).

Thus far, the status of the project is as follows:

 Initially, the Regression example program provided on the GitHub page of PyTorch [37] was studied
and accelerated. This was done in order to further consolidate the methodology which will be used
when accelerating the chosen synthesizer application. In the process of doing so, it was discovered
that the top-level profiling was not enough to understand the bottlenecks of the system. In addition, the
approach to design the hardware will include using Vivado HLS [38] for writing C++ programs, which is
then synthesized. This is then exported to as IP and connected within a model on Vivado 2018.2 [39].
This application was accelerated such that on average, the training period will execute 2.35x faster.
This design here calculated the following equations, which is the gradients followed by matrix
multiplications (not shown here):

𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒊𝒊𝒈𝒈𝒈𝒈𝒕𝒕 =

⎩
⎨

⎧
𝟏𝟏
𝒈𝒈

(𝒙𝒙 − 𝒚𝒚), |𝒙𝒙 − 𝒚𝒚| < 𝟏𝟏
𝟏𝟏
𝒈𝒈

(
𝒙𝒙 − 𝒚𝒚

|𝒙𝒙 − 𝒚𝒚|), 𝒐𝒐𝒕𝒕𝒉𝒉𝒈𝒈𝒈𝒈𝒐𝒐𝒊𝒊𝒐𝒐𝒈𝒈
 (1)

 Through the above experiment, methods to transfer larger data efficiently was also discovered. The

two methods are either using the, AXI4Lite interface [40] or using AXI-Stream interface [40]. Using the
AXI-Stream utilizes the Direct Memory Access (DMA) IP and is the best approach when large amount
of data is to be transferred.

 Next, since the previous application was accelerating the training period, another application was
programmed such that the accelerator will closely resemble what the synthesizer accelerator will
include. This was a simple program developed which included a two-layer RNN. The network did not
have any specific functionality but instead, the aim was to imagine that once an RNN was trained, can
an accelerator be designed to compute the output when provided with a random input. Hence, rather
than the functionality of the network being something specific, the focus was on the operations
involved. This included the follow equation taken from the PyTorch documentation [41]:

𝒉𝒉𝒕𝒕 = 𝐭𝐭𝐭𝐭𝐧𝐧𝐡𝐡�𝒐𝒐𝒊𝒊𝒉𝒉𝒙𝒙𝒕𝒕 + 𝒃𝒃𝒊𝒊𝒉𝒉 +𝒐𝒐𝒉𝒉𝒉𝒉𝒉𝒉(𝒕𝒕−𝟏𝟏) + 𝒃𝒃𝒉𝒉𝒉𝒉� (2)

The application with the accelerator had a speedup factor of almost 13x. The dimension, which is the
size of the inputs, was 128. The smaller this is, the greater the acceleration attained. Another outcome
of this experiment was that the overhead of transferring large sums of data is positively correlated to
the time taken to transfer. This indeed becomes challenge which must be faced later in the project. In
addition, if a larger FPGA chip was to be used, a significantly higher speedup factor could have been
achieved as more parallel units could have been deployed although this is a budget constraint to the
project.

 A side test to the above was conducted regarding the speed at which hardware performs the
hyperbolic tangent calculation. Results indicated it was 20% slower than the CPU.

 As for the chosen application, SampleRNN, models have been training in the background on a server.
Many variations, such as a new instrument, the guitar, has been put to train as well. Another important
variation is the reduction of the dimension size mentioned in the previous experimental application as

66

4. Adaption of Supervisor and Examiners feedback in the ECTE451 report:
The comments provided in the previous session were mainly positive. Further details on some of the parameters
of the Neural Network, such as the training loss, and their specific definitions within the context of this application
will be provided in the final report this session. Lastly, the particulars on the architecture of SampleRNN will also
be polished upon, as more attention will be paid within this session on the functionality while performing analysis.

Appendix

References

[1] “Google’s DeepMind Claims Massive Progress in Synthesized Speech,” Fortune. [Online]. Available:
http://fortune.com/2016/09/09/google-deepmind-wavenet-ai/. [Accessed: 24-Sep-2018].

[2] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” ArXiv160903499 Cs, Sep. 2016.
[3] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey,”

Proc. IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.
[4] T. L. Paine et al., “Fast Wavenet Generation Algorithm,” Nov. 2016.
[5] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling, “Improved Variational Inference

with Inverse Autoregressive Flow,” p. 9.
[6] D. Rausch, B. Hentschel, and T. Kuhlen, “Efficient modal sound synthesis on GPUs,” in 2014 IEEE VR Workshop:

Sonic Interaction in Virtual Environments (SIVE), 2014, pp. 13–18.
[7] N. Kalchbrenner et al., “Efficient Neural Audio Synthesis,” in arXiv:1802.08435 [cs, eess], 2018.

well. This was done following a test which indicated that the application was using the SWAP at the
default dimension size. Therefore, this must be avoided as it can be another bottleneck within the
system. The default dimension being used was 1024, whereas new models being trained are for 256
and 512. Results for the 256 indicate no SWAP usage. As for 512, training is yet to reach an epoch.

A Gantt chart (Figure 1) indicating the completion of project objectives and tasks during ECTE458 can be found in
the Appendix of this document.

Additional Materials from the ECTE451 Proposal are tabulated below:

Table 1 - Additional materials required.

Resource Name/Description Use-case within this project

Linux Server

For continuously training different neural networks in
the background. When sound is to be generated, the
epoch data (weights and bias) are exported on to the
PYNQ-Z1 board.

PyTorch [42]

Neural Network library for Python. This is basis upon
which the chosen application was built on. It is an
open-source library which was ported on various
machines within this project.

SampleRNN [43] The chosen RNN-based sound synthesizer which will
be at the core of this project.

Figure 1 - Gantt Chart indicating Milestones and Deliverables of ECTE458.

67

[8] K.-S. Oh and K. Jung, “GPU implementation of neural networks,” Pattern Recognit., vol. 37, no. 6, pp. 1311–1314,
Jun. 2004.

[9] L. Savioja, V. Välimäki, S. Iii, and J. O, “Real-Time Additive Synthesis with One Million Sinusoids Using a GPU,”
presented at the Audio Engineering Society Convention 128, 2010.

[10] “Realtime GPU Audio - ACM Queue.” [Online]. Available: https://queue.acm.org/detail.cfm?id=2484010. [Accessed:
28-Sep-2018].

[11] S. Mehri et al., “SampleRNN: An Unconditional End-to-End Neural Audio Generation Model,” 2016.
[12] S. Chang et al., “Dilated Recurrent Neural Networks,” ArXiv171002224 Cs, Oct. 2017.
[13] A. Graves, “Generating Sequences With Recurrent Neural Networks,” ArXiv13080850 Cs, Aug. 2013.
[14] “Recurrent neural network,” Wikipedia. 14-Sep-2018.
[15] T. V. Huynh, “Deep neural network accelerator based on FPGA,” in 2017 4th NAFOSTED Conference on Information

and Computer Science, 2017, pp. 254–257.
[16] Y. Huang, J. Shen, Z. Wang, M. Wen, and C. Zhang, “A High-efficiency FPGA-based Accelerator for Convolutional

Neural Networks using Winograd Algorithm,” in Journal of Physics: Conference Series, 2018, vol. 1026, p. 012019.
[17] Z. Liu et al., “Throughput-Optimized FPGA Accelerator for Deep Convolutional Neural Networks,” ACM Trans

Reconfigurable Technol Syst, vol. 10, no. 3, pp. 17:1–17:23, Jul. 2017.
[18] “Sound Synthesis Theory/Introduction - Wikibooks, open books for an open world.” [Online]. Available:

https://en.wikibooks.org/wiki/Sound_Synthesis_Theory/Introduction. [Accessed: 28-Sep-2018].
[19] N. Raghuvanshi, C. Lauterbach, A. Chandak, D. Manocha, M. C. Lin, and M. C. Lin, “Real-time Sound Synthesis and

Propagation for Games,” Commun. ACM, vol. 50, no. 7, pp. 66–73, Jul-2007.
[20] S. Selvamani, “Development of a sound synthesis application and a music controller for sound designers,” RISE:2018.

.
[21] V. Välimäki, J. Huopaniemi, M. Karjalainen, and Z. Jánosy, “Physical Modeling of Plucked String Instruments with

Application to Real-Time Sound Synthesis,” presented at the Audio Engineering Society Convention 98, 1995.
[22] “Cloud Text-to-Speech - Speech Synthesis | Cloud Text-to-Speech API,” Google Cloud. [Online]. Available:

https://cloud.google.com/text-to-speech/. [Accessed: 29-Sep-2018].
[23] B. Truax, “Real-Time Granular Synthesis with a Digital Signal Processor,” Comput. Music J., vol. 12, no. 2, pp. 14–

26, 1988.
[24] J. A. Stankovic, “Real-time and embedded systems,” ACM Comput. Surv., vol. 28, no. 1, pp. 205–208, Mar. 1996.
[25] S. Steinke, “What’s the difference between a matrix and a tensor?,” Medium, 28-Aug-2017. .
[26] A. S. V, “Understanding Activation Functions in Neural Networks,” Medium, 30-Mar-2017. .
[27] “Autograd: Automatic Differentiation — PyTorch Tutorials 1.0.0.dev20181002 documentation.” [Online]. Available:

https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html. [Accessed: 04-Oct-2018].
[28] F.-F. Li, “Lecture 4 | Introduction to Neural Networks,” Stanford University School of Engineering, 11-Aug-2017.
[29] “Artificial neural network,” Wikipedia. 28-Sep-2018.
[30] L. Wyse, “Real-valued parametric conditioning of an RNN for interactive sound synthesis,” 2018.
[31] Y. Hao and S. Quigley, “The implementation of a Deep Recurrent Neural Network Language Model on a Xilinx

FPGA,” ArXiv171010296 Cs, Oct. 2017.
[32] Digilent Inc, “PYNQ-Z1 Reference Manual [Reference.Digilentinc],” 2018. [Online]. Available:

https://reference.digilentinc.com/reference/programmable-logic/pynq-z1/reference-manual. [Accessed: 29-Sep-
2018].

[33] PyTorch, “PyTorch,” 2018. [Online]. Available: https://www.pytorch.org. [Accessed: 30-Sep-2018].
[34] TensorFlow, “TensorFlow,” TensorFlow, 2018. [Online]. Available: https://www.tensorflow.org/. [Accessed: 01-Oct-

2018].
[35] K. Dubovikov, “PyTorch vs TensorFlow — spotting the difference,” Towards Data Science, 20-Jun-2017. [Online].

Available: https://towardsdatascience.com/pytorch-vs-tensorflow-spotting-the-difference-25c75777377b. [Accessed:
25-Sep-2018].

[36] U. India, “Tensorflow or PyTorch : The Force is Strong with which One?,” Medium, 24-Apr-2018. .
[37] PyTorch, examples/regression at master · pytorch/examples. 2019.
[38] “Vivado High-Level Synthesis.” [Online]. Available: https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html. [Accessed: 16-Nov-2018].
[39] Vivado, “Vivado Design Suite,” 2018. [Online]. Available: https://www.xilinx.com/products/design-

tools/vivado.html. [Accessed: 29-Sep-2018].
[40] Xilinx, “AXI Reference Guide,” vol. 13, p. 82, 2011.
[41] PyTorch, “torch.nn — PyTorch master documentation,” 2019. [Online]. Available:

https://pytorch.org/docs/0.4.1/nn.html#rnn. [Accessed: 16-Feb-2019].
[42] PyTorch, pytorch/pytorch: Tensors and Dynamic neural networks in Python with strong GPU acceleration. 2019.
[43] “SampleRNN in PyTorch.” [Online]. Available: http://deepsound.io/samplernn_pytorch.html. [Accessed: 14-Nov-

2018].

68

APPENDIX B LOGBOOK SUMMARY SHEET

69

APPENDIX C STEPS TO PORT & TEST PYTORCH

1. Login as super user: sudo su
2. Update already installed packages: apt-get update && apt-get upgrade
3. Restart: shutdown -r now
4. Login as super user: sudo su
5. Go to root directory: cd /
6. Create a SWAP file of size 10 gigabytes: dd if=/dev/zero of=swapfile bs=1M count=10000
7. Make it compatible: mkswap swapfile
8. Start using the SWAP file created: swapon swapfile
9. Add new SWAP file to configuration file: nano /etc/fstab

a. Keep a note of the location of the default SWAP file of size 1GB. We will need this
later. (/var/swap/)

b. Remove all other lines and add this: /swapfile none swap sw 0 0
10. Remove default SWAP file which comes with the OS: rm -R /var/swap (OR WHATEVER

LOCATION WAS IN STEP 9)
11. Check if swap is active: swapon -s
12. Restart: shutdown -r now
13. Login as super user: sudo su
14. Provide permissions to use new SWAP file: chmod 600 /swapfile
15. Install PyTorch dependencies: apt-get install libopenblas-dev cython3 libatlas-base-dev

m4 libblas-dev cmake cython python3-dev python3-yaml
16. Install other useful packages: pip3 install --user pyyaml numpy typing tmux
17. Restart: shutdown -r now
18. Login as super user: sudo su
19. Clone the PyTorch repository from GitHub: git clone --recursive

https://github.com/pytorch/pytorch
20. Open the directory: cd pytorch
21. Obtain v0.4.1 of PyTorch: git checkout tags/v0.4.1 -b build
22. Update modules: git submodule update --init --recursive
23. Enter tmux (allows leaving the terminal but still running process): tmux
24. Set flag: export NO_CUDA=1
25. Set flag: export NO_DISTRIBUTED=1
26. Set flag: export MAX_JOBS=1
27. Build dependencies: python3 setup.py build_deps
28. Install PyTorch: python3 setup.py develop

Program to test:
import torch # Usually error here if not ported correctly
x = torch.randn(5,5) # Create a 5x5 random-valued tensor
y = torch.randn(5,5) # Create another 5x5 random-valued tensor
z = x + y # Perform the element-wise addition
print(z) # Output Result. Should be a 5x5 tensor (unique)

https://github.com/pytorch/pytorch

70

APPENDIX D GENERIC VIVADO BLOCK DESIGN

71

APPENDIX E SOFTWARE RE-IMPLMENTATION OF RNN LAYER

def softwareRNNLayer(rnn):
 # Pre processing
 counter = 0;
 for weight in rnn.parameters():
 if (counter == 0):
 weight_ih_0 = weight.data
 counter = counter + 1
 elif (counter == 1):
 weight_hh_0 = weight.data
 counter = counter + 1
 elif (counter == 2):
 bias_ih_0 = weight.data
 counter = counter + 1
 elif (counter == 3):
 bias_hh_0 = weight.data
 counter = counter + 1
 elif (counter == 4):
 weight_ih_1 = weight.data
 counter = counter + 1
 elif (counter == 5):
 weight_hh_1 = weight.data
 counter = counter + 1
 elif (counter == 6):
 bias_ih_1 = weight.data
 counter = counter + 1
 elif (counter == 7):
 bias_hh_1 = weight.data
 counter = counter + 1
 # Calculating Hidden Layer 1 output
 output = torch.tanh(torch.mm(weight_ih_0, input[0].t()).t() + bias_ih_0 +
torch.mm(weight_hh_0, h0[0].t()).t() + bias_hh_0) # Equation from the Documentation
 output = output.reshape(1,1,dim) # Post Processing for hidden layer 1
 # Calculating Hidden Layer 2 output
 output_1 = torch.tanh(torch.mm(weight_ih_1, output[0].t()).t() + bias_ih_1 +
torch.mm(weight_hh_1, h0[1].t()).t() + bias_hh_1)
 output_1 = output_1.reshape(1,1,dim)

 # Putting the above two results together
 hn = torch.cat((output, output_1), 0).reshape(2,1,128)

 print(output_1)
 return output_1, hn

72

APPENDIX F VIVADO HLS CODE FOR RNN LAYER

#include <ap_axi_sdata.h> // Used for inclusion of fixed-point datatype.
#include "hls_math.h" // Allows performing tanh in hardware.

/* The following are constants used to pull data out of the stream
 * If the program needs to be adapted for another dimension, only these
 * values must be altered.
 */
#define SIZE 128
#define OFST1 2*SIZE
#define OFST2 SIZE*SIZE
#define OFST3 3*SIZE
#define OFST4 OFST3+OFST2
#define OFST5 OFST4+OFST2
#define OFST6 OFST5+SIZE
#define OFST7 OFST6+SIZE
#define OFST8 OFST7+OFST2
#define OFST9 OFST8+OFST2
#define OFST10 OFST9+SIZE
#define TOT_OUTPUT OFST1
#define TOT_INPUT OFST10+SIZE

// Structure to hold stream items.
struct datatype {
 float data;
 bool last;
};

// Two fixed-point datatypes defined after analysing the nature of data being used.
typedef ap_fixed<21,5> stream_fixed_type;
typedef ap_fixed<18,2> fixed2;

// Top Function:
void rnn_larger(datatype input[TOT_INPUT], datatype output[TOT_OUTPUT]) {
#pragma HLS INTERFACE ap_ctrl_none port=return // Using no protocol at block-level.
#pragma HLS INTERFACE axis port=input // Both I/O are AXI Streams.
#pragma HLS INTERFACE axis port=output

 // Variable Declaration
 int i, j, counter;
 stream_fixed_type x[SIZE], h0[2*SIZE];
 stream_fixed_type mult_temp[SIZE], mult_temp2[SIZE];
 stream_fixed_type w_ih[SIZE*SIZE], w_hh[SIZE*SIZE], b_ih[SIZE], b_hh[SIZE];
 fixed2 out1[OFST1] = {};
 static bool last[OFST1] = {};

 /* Array holds the last flag details. The last index is set to HIGH to
 * notify the CPU that the output values are sent completely.
 */
 last[OFST1-1] = true;

 /* The following for loops are pulling data out off the stream
 * to begin the calculation of the first hidden layer's output.
 */
 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 x[i] = input[i].data;
 }

 for (i = 0; i < OFST1; i++) {
#pragma HLS PIPELINE
 h0[i] = input[i+SIZE].data;
 }

 for (i = 0; i < OFST2; i++) {
#pragma HLS PIPELINE
 w_ih[i] = input[i+OFST3].data;
 }

 for (i = 0; i < OFST2; i++) {

73

#pragma HLS PIPELINE
 w_hh[i] = input[i+OFST4].data;
 }

 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 b_ih[i] = input[i+OFST5].data;
 }

 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 b_hh[i] = input[i+OFST6].data;
 }

 /* This for loop ensures that when the accelerator is called multiple
 * times by the CPU, the values from the previous run are not accumulated.
 * Done by simply setting values to 0.
 */
 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 mult_temp[i] = 0;
 mult_temp2[i] = 0;
 }

 // Now that the data is all loaded, the matrix multiplications can be conducted.
 counter = 0;
 for (i = 0; i < SIZE; i++) {
 for (j = 0; j < SIZE; j++) {
#pragma HLS UNROLL factor=32 // Unrolling this loop 32 times.
 mult_temp[i] = mult_temp[i] + (w_ih[counter] * x[j]);
 mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j]);
 counter++;
 }
 }

 /* Once the matrix multiplication is complete, the activation function can be applied.
 * Note that here the bias is also added.
 */
 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 out1[i] = tanh((float)(mult_temp[i] + b_ih[i] + mult_temp2[i] + b_hh[i]));
 }

 /* The following for loops are pulling data out off the stream
 * to begin the calculation of the second hidden layer's output.
 */
 for (i = 0; i < OFST2; i++) {
#pragma HLS PIPELINE
 w_ih[i] = input[i+OFST7].data;
 }

 for (i = 0; i < OFST2; i++) {
#pragma HLS PIPELINE
 w_hh[i] = input[i+OFST8].data;
 }

 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 b_ih[i] = input[i+OFST9].data;
 }

 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 b_hh[i] = input[i+OFST10].data;
 }

 /* Once again the array is cleared. Note that this is the same
 * array as before used to save space rather than declaring
 * four arrays.
 */
 for (i = 0; i < SIZE; i++) {

74

#pragma HLS PIPELINE
 mult_temp[i] = 0;
 mult_temp2[i] = 0;
 }

 /* Matrix multiplication again. Notice that the input x here is
 * here is actually the output of the first hidden layer.
 */
 counter = 0;
 for (i = 0; i < SIZE; i++) {
 for (j = 0; j < SIZE; j++) {
#pragma HLS UNROLL factor=32
 mult_temp[i] = mult_temp[i] + (w_ih[counter] * out1[j]);
 mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j+SIZE]);
 counter++;
 }
 }

 // Activation function again.
 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 out1[i+SIZE] = tanh((float)(mult_temp[i] + b_ih[i] + mult_temp2[i] + b_hh[i]));
 }

 // Sending the data back to the CPU.
 for (i = 0; i < OFST1; i++) {
#pragma HLS PIPELINE
 output[i].data = out1[i];
 output[i].last = last[i];
 }

}

75

APPENDIX G RNN LAYER PYTHON PROGRAM

import torch # PyTorch Library
import pynq.lib.dma # DMA Module
from pynq import Xlnk # Physical Memory Allocation Module
import numpy as np # NumPy Library for Arrays
from pynq import Overlay # Overlay Module
import time # Measuring execution time

overlay = Overlay('./rnn_new_test4.bit') # Loading the bitstream onto the FPGA
dma1 = overlay.axi_dma_0 # Referencing the DMA within the block design
xlnk = Xlnk() # Creating an instance of the Memory Manager
dim = 128 # Size of features
in_stream = xlnk.cma_array(shape=(3*dim+2*(dim*dim+dim*dim+dim+dim),1), dtype=np.float32) #
Allocating memory for input
out_stream = xlnk.cma_array(shape=(2*dim,1), dtype=np.float32) # Allocating memory for output

rnn = torch.nn.RNN(dim, dim, 2) # Creating an RNN Layer: Mode = tanh, Input_size = 128,
Hidden_size = 128, Num_layers = 2
input = torch.randn(1, 1, dim) # Generating a random input tensor
h0 = torch.randn(2, 1, dim) # Generating a random initial hidden state

The following loop performs a forward pass on CPU
deltaT = 0 # Variable to accumulate time taken per forward pass
for i in range(5): # Forward pass done 5 times
 startTime = time.time() # Used to measure time
 output, hn = rnn(input, h0) # Forward pass
 endTime = time.time()
 deltaT = deltaT + (endTime - startTime) # Accumulate time per pass
print('SW: ', deltaT/5) # Display average execution time

Pre-processing:

Obtain weights and biases
counter = 0;
for weight in rnn.parameters():
 if (counter == 0):
 weight_ih_0 = weight.data
 counter = counter + 1
 elif (counter == 1):
 weight_hh_0 = weight.data
 counter = counter + 1
 elif (counter == 2):
 bias_ih_0 = weight.data
 counter = counter + 1
 elif (counter == 3):
 bias_hh_0 = weight.data
 counter = counter + 1
 elif (counter == 4):
 weight_ih_1 = weight.data
 counter = counter + 1
 elif (counter == 5):
 weight_hh_1 = weight.data
 counter = counter + 1
 elif (counter == 6):
 bias_ih_1 = weight.data
 counter = counter + 1
 elif (counter == 7):
 bias_hh_1 = weight.data
 counter = counter + 1

Placing data into the Physical Memory
in_stream[:] = torch.cat((input[0].t(), h0[0].t(), h0[1].t(),
weight_ih_0.reshape(dim*dim,1),weight_hh_0.reshape(dim*dim,1), bias_ih_0.reshape(dim,1),
bias_hh_0.reshape(dim,1),
weight_ih_1.reshape(dim*dim,1),weight_hh_1.reshape(dim*dim,1),bias_ih_1.reshape(dim,1),bias_h
h_1.reshape(dim,1)), 0)

The following loop performs a forward pass in Hardware
deltaT_hw = 0 # Accumulation of time taken per forward pass

76

for i in range(5): # Hardware also is run 5 times
 startTime_hw = time.time() # Used for measuring time
 dma1.sendchannel.transfer(in_stream) # Provide the DMA the Physical Address of in_stream
 dma1.recvchannel.transfer(out_stream) # Provide the DMA the Physical Address of out_stream
 dma1.sendchannel.wait() # Wait for the transfer to complete
 dma1.recvchannel.wait()
 endTime_hw = time.time() # Used for measuring time
 deltaT_hw = deltaT_hw + (endTime_hw - startTime_hw) # Accumulate

Post-processing:
hn_output = torch.tensor(out_stream).reshape(2,1,dim) # output of both hidden layers
output_hw = hn_output[1] # actual output

Performances:
print('Mean-square Error = ', torch.mean((output - output_hw).pow(2)))
print('HW: ', deltaT_hw/5)
print('Speedup: ', (deltaT/5) / (deltaT_hw/5))

Results:

77

APPENDIX H STEPS TO PORT & TEST LIBROSA

All commands were executed as a super user.

Source: https://github.com/librosa/librosa/issues/757

1. Download LLVM 6.0.1 source code
a. http://releases.llvm.org/download.html#6.0.1
b. Unzip the file: tar -xf llvm-6.0.1.src.tar.gz

2. Create a directory for the build
a. mkdir llvm_build
b. cd llvm_build

3. Configure the LLVM build
a. cmake ~/Downloads/llvm-6.0.1.src -DLLVM_TARGETS_TO_BUILD="ARM" -

DCMAKE_BUILD_TYPE="Release"
4. Begin the build, make sure to use only 1 job as the PYNQ has limited RAM.

a. cmake –build . -- -j1
5. Install once build finishes

a. cmake –build . --target install
6. Install librosa 0.6.1

a. pip3 install librosa==0.6.1
7. Install llvmlite 0.24.0 (This command will automatically uninstall the package which comes

with librosa 0.6.1, which is what we want)
a. pip3 install llvmlite==0.24.0

8. Install the correct Numba version (Otherwise error. This also uninstalls the numba package
with librosa 0.6.1 which again is needed for the llvmlite version)

a. pip3 install numba==0.39.0

Test:
python3
import librosa
No error should pop up now.

https://github.com/librosa/librosa/issues/757
http://releases.llvm.org/download.html#6.0.1

78

APPENDIX I TOP-LEVEL PROFILING RESULTS

ncalls tottime percall cumtime percall filename

1 0.001 0.001 545.452 545.452 /home/xilinx/samplernn-

pytorch/trainer/plugins.py:157(epoch)

1 12.676 12.676 545.442 545.442 /home/xilinx/samplernn-pytorch/model.py:249(__call__)

86250/17250 6.944 0 523.407 0.03 /home/xilinx/pytorch/torch/nn/modules/module.py:471(__

call__)

16000 8.001 0.001 501.484 0.031 /home/xilinx/samplernn-pytorch/model.py:167(forward)

50500 1.181 0 344.561 0.007 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:102(

__call__)

50500 193.402 0.004 326.564 0.006 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:39(co

mpute_weight)

50500 2.441 0 131.344 0.003 /home/xilinx/pytorch/torch/nn/modules/conv.py:174(forw

ard)

50500 3.074 0 129.743 0.003 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:20(_

norm)

49250 128.374 0.003 128.374 0.003 {built-in method conv1d}

49250 117.079 0.002 117.079 0.002 {method 'norm' of 'torch._C._TensorBase' objects}

1250 0.058 0 20.5 0.016 /home/xilinx/samplernn-pytorch/model.py:198(run_rnn)

1250 0.363 0 20.327 0.016 /home/xilinx/samplernn-pytorch/model.py:99(forward)

1250 1.77 0 16.816 0 {built-in method builtins.setattr}

1250 13.948 0 15.046 0 /home/xilinx/pytorch/torch/nn/modules/module.py:530(__

setattr__)

1250 13.002 0 13.002 0 {method 'view' of 'torch._C._TensorBase' objects}

50521 0.41 0 9.024 0.007 /home/xilinx/samplernn-pytorch/nn.py:34(forward)

50500 0.225 0 8.276 0.007 /home/xilinx/pytorch/torch/nn/modules/rnn.py:153(forwar

d)

1250 0.101 0 6.671 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:318(forw

ard)

1250 0.063 0 6.47 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:259(forw

ard)

1250 0.338 0 6.261 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:94(forwa

rd)

1250 0.422 0 5.551 0.002 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:131(forw

ard)

2500 1.439 0.001 4.707 0.002 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:60(GRUC

ell)

2500 0.384 0 4.295 0 /home/xilinx/pytorch/torch/nn/functional.py:960(log_soft

max)

5000 0.652 0 3.744 0 /home/xilinx/pytorch/torch/nn/modules/sparse.py:107(for

ward)

5000 2.697 0 3.673 0 {built-in method builtins.getattr}

170000 3.534 0 3.534 0 /home/xilinx/pytorch/torch/nn/modules/module.py:514(__

getattr__)

16000 0.087 0 3.419 0.003 /home/xilinx/pytorch/torch/nn/modules/conv.py:555(forw

ard)

111000 3.402 0 3.402 0 {method 'multinomial' of 'torch._C._TensorBase' objects}

285761 3.312 0.003 3.312 0.003 {built-in method conv_transpose1d}

16000 0.193 0 2.937 0 /home/xilinx/pytorch/torch/nn/functional.py:1036(embedd

ing)

16000 2.749 0 2.749 0 {method 'permute' of 'torch._C._TensorBase' objects}

79

53000 2.745 0 2.745 0 {built-in method embedding}

16000 2.374 0 2.374 0 {method 'log_softmax' of 'torch._C._TensorBase' objects}

16000 0.154 0 2.144 0 /home/xilinx/pytorch/torch/nn/functional.py:1010(linear)

32000 0.396 0 2.113 0 /home/xilinx/pytorch/torch/nn/functional.py:635(relu)

16000 1.982 0 1.982 0 {method 'exp_' of 'torch._C._TensorBase' objects}

32000 1.719 0 1.719 0 {built-in method addmm}

16000 1.717 0 1.717 0 {built-in method relu}

16000 1.507 0 1.507 0 {method 'squeeze' of 'torch._C._TensorBase' objects}

32000 0.389 0 1.475 0 /home/xilinx/pytorch/torch/nn/functional.py:839(_get_soft

max_dim)

133252 1.145 0 1.145 0 {method 'size' of 'torch._C._TensorBase' objects}

16000 1.085 0 1.086 0 {built-in method _warnings.warn}

20752 1.068 0 1.068 0 {method 'unsqueeze' of 'torch._C._TensorBase' objects}

11250 0.191 0 0.872 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:170(<gene

xpr>)

188502 0.69 0 0.69 0 {method 'values' of 'collections.OrderedDict' objects}

5000 0.076 0 0.633 0 /home/xilinx/pytorch/torch/nn/modules/module.py:731(pa

rameters)

152751 0.598 0 0.598 0 {method 'get' of 'dict' objects}

11250 0.266 0 0.557 0 /home/xilinx/pytorch/torch/nn/modules/module.py:750(na

med_parameters)

105757 0.539 0 0.539 0 {built-in method builtins.isinstance}

5000 0.481 0 0.481 0 {method 'chunk' of 'torch._C._TensorBase' objects}

11250 0.317 0 0.465 0 /home/xilinx/pytorch/torch/nn/modules/container.py:155(

__iter__)

83752 0.456 0 0.456 0 {method 'contiguous' of 'torch._C._TensorBase' objects}

6250 0.441 0 0.441 0 {built-in method sigmoid}

16002 0.407 0 0.407 0 {built-in method cat}

95286/92022 0.366 0 0.393 0 {built-in method builtins.len}

2500 0.018 0 0.352 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:231(all_we

ights)

1250 0.029 0 0.334 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:233(<listco

mp>)

1250 0.252 0 0.252 0 {method 't' of 'torch._C._TensorBase' objects}

5000 0.246 0 0.246 0 {method 'dim' of 'torch._C._TensorBase' objects}

1250 0.179 0 0.241 0 /home/xilinx/samplernn-

pytorch/utils.py:16(linear_dequantize)

75250 0.202 0 0.202 0 {built-in method tanh}

10000 0.107 0 0.181 0 {method 'add' of 'set' objects}

20000 0.108 0 0.156 0 /home/xilinx/pytorch/torch/tensor.py:384(__hash__)

2500 0.146 0 0.146 0 {method 'transpose' of 'torch._C._TensorBase' objects}

1250 0.055 0 0.11 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:120(check

_forward_args)

16002 0.02 0 0.093 0 /home/xilinx/pytorch/torch/nn/modules/container.py:132(

__getitem__)

1005 0.092 0 0.092 0 {built-in method builtins.iter}

80

1252 0.071 0 0.071 0 {method 'expand' of 'torch._C._TensorBase' objects}

1251 0.032 0 0.067 0 /home/xilinx/pytorch/torch/nn/modules/container.py:123(

_get_abs_string_index)

1005 0.064 0 0.064 0 {method 'float' of 'torch._C._TensorBase' objects}

1250 0.036 0 0.06 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:231(Auto

gradRNN)

20000 0.048 0 0.048 0 {built-in method builtins.id}

10000 0.048 0 0.048 0 {method 'data_ptr' of 'torch._C._TensorBase' objects}

1250 0.027 0 0.036 0 /home/xilinx/pytorch/torch/nn/modules/container.py:152(

__len__)

3264 0.024 0 0.033 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:141(check

_hidden_size)

7500 0.024 0 0.024 0 {method 'append' of 'list' objects}

1250 0.02 0 0.023 0 /home/xilinx/pytorch/torch/nn/modules/module.py:795(na

med_children)

1250 0.017 0 0.022 0 /home/xilinx/pytorch/torch/backends/cudnn/__init__.py:8

2(is_acceptable)

1250 0.013 0 0.019 0 /home/xilinx/pytorch/torch/nn/backends/backend.py:7(__

getattr__)

1250 0.018 0 0.018 0 {built-in method torch._C._jit_is_tracing}

1250 0.013 0 0.017 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:89(Stack

edRNN)

1250 0.012 0 0.012 0 {method 'detach' of 'torch._C._TensorBase' objects}

1 0.008 0 0.008 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:316(RNN

)

1250 0.007 0 0.007 0 /home/xilinx/pytorch/torch/nn/modules/conv.py:436(_out

put_padding)

1250 0.007 0 0.007 0 {method 'items' of 'collections.OrderedDict' objects}

2500 0.007 0 0.007 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:130(Rec

urrent)

1250 0 0 0.007 0.007 /usr/local/lib/python3.6/dist-

packages/librosa/output.py:187(write_wav)

1 0.006 0 0.006 0 {built-in method torch._C._get_cudnn_enabled}

1250 0.003 0.003 0.004 0.004 /usr/local/lib/python3.6/dist-

packages/librosa/util/utils.py:552(normalize)

1 0.003 0 0.003 0 {built-in method _operator.index}

1 0 0 0.002 0.002 /usr/lib/python3/dist-

packages/scipy/io/wavfile.py:284(write)

1005 0 0 0.001 0 /usr/lib/python3.6/warnings.py:85(_showwarnmsg)

3 0 0 0.001 0 /usr/lib/python3.6/warnings.py:20(_showwarnmsg_impl)

3 0 0 0.001 0.001 /usr/lib/python3/dist-

packages/scipy/io/wavfile.py:400(_array_tofile)

1 0 0 0.001 0.001 /usr/local/lib/python3.6/dist-

packages/librosa/util/utils.py:110(valid_audio)

5 0.001 0 0.001 0 {method 'write' of '_io.BufferedWriter' objects}

1 0.001 0 0.001 0 {method 'reduce' of 'numpy.ufunc' objects}

81

APPENDIX J LINE PROFILING RESULTS

Timer unit: 1e-06 s
Total time: 5.36674 s
File: /home/xilinx/pytorch/torch/nn/_functions/rnn.py
Function: GRUCell at line 75

Hits Time Per Hit % Time Line Contents
==
 @profile
 def GRUCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None):
2500 1302883.0 521.2 24.3 gi = F.linear(input, w_ih, b_ih)
2500 1303676.0 521.5 24.3 gh = F.linear(hidden, w_hh, b_hh)

2500 318547.0 127.4 5.9 i_r, i_i, i_n = gi.chunk(3, 1)
2500 265156.0 106.1 4.9 h_r, h_i, h_n = gh.chunk(3, 1)

2500 580300.0 232.1 10.8 resetgate = torch.sigmoid(i_r + h_r)
2500 426801.0 170.7 8.0 inputgate = torch.sigmoid(i_i + h_i)
2500 603764.0 241.5 11.3 newgate = torch.tanh(i_n + resetgate * h_n)
2500 534629.0 213.9 10.0 hy = newgate + inputgate * (hidden - newgate)

2500 30982.0 12.4 0.6 return hy

Total time: 2.14771 s
File: /home/xilinx/pytorch/torch/nn/functional.py
Function: linear at line 1009

Hits Time Per Hit % Time Line Contents
==
 @profile
 def linear(input, weight, bias=None):
 r"""
 Applies a linear transformation to the incoming data: :math:`y =
xA^T + b`.

 Shape:

 - Input: :math:`(N, *, in_features)` where ̀ *` means any number
of
 additional dimensions
 - Weight: :math:`(out_features, in_features)`
 - Bias: :math:`(out_features)`
 - Output: :math:`(N, *, out_features)`
 """
5000 73913.0 14.8 3.4 if input.dim() == 2 and bias is not None:
 # fused op is marginally faster
5000 2073802.0 414.8 96.6 return torch.addmm(bias, input, weight.t())

 output = input.matmul(weight.t())
 if bias is not None:
 output += bias
 return output

Total time: 129.681 s
File: /home/xilinx/pytorch/torch/nn/utils/weight_norm.py
Function: _norm at line 54

 Hits Time Per Hit % Time Line Contents
===
 @profile
 def _norm(p, dim):
 """Computes the norm over all dimensions except dim"""
50514 565315.0 11.2 0.4 if dim is None:
 return p.norm()
50514 517167.0 10.2 0.4 elif dim == 0:
50514 1356034.0 26.8 1.0 output_size = (p.size(0),) + (1,) * (p.dim() - 1)
50514 127242022.0 2518.9 98.1 return p.contiguous().view(p.size(0), -
1).norm(dim=1).view(*output_size)
 elif dim == p.dim() - 1:
 output_size = (1,) * (p.dim() - 1) + (p.size(-1),)
 return p.contiguous().view(-1, p.size(-
1)).norm(dim=0).view(*output_size)
 else:
 return _norm(p.transpose(0, dim), 0).transpose(0, dim)

82

Total time: 335.674 s
File: /home/xilinx/pytorch/torch/nn/utils/weight_norm.py
Function: compute_weight at line 73

 Hits Time Per Hit % Time Line Contents
===
 @profile
 def compute_weight(self, module):
50507 3558188.0 70.4 1.1 g = getattr(module, self.name + '_g')
50507 2724949.0 54.0 0.8 v = getattr(module, self.name + '_v')
50507 1604996.0 31.8 0.5 if (v.size()[0] == 64 and v.size()[1] == 64 and v.size()[2]
== 1):
16252 25135848.0 1546.6 7.5 return v * (g / _norm(v, self.dim))
34255 726835.0 21.2 0.2 elif (v.size()[0] == 256 and v.size()[1] == 64 and v.size()[2]
== 1):
16001 65264167.0 4078.8 19.4 return v * (g / _norm(v, self.dim))
18254 236658769.0 12964.8 70.5 return v * (g / _norm(v, self.dim))

83

APPENDIX K SOFTWARE RE-IMPLMENTATION OF WEIGHT
NORMALISATION

def softwareWeightNormalisation(v, g):
 # Pre-processing
 v_copy = v.reshape(v.size()[0]*v.size()[1]*v.size()[2],1) # Reshape the tensor, v, into a
row vector
 g_copy = g.reshape(g.size()[0],1) # Reshape tensor g as well into a

 # Initialise tensors
 norm = torch.zeros(g_copy.size()) # Create tensor with the same dimension as row vector g,
with all zeros
 square_sum = torch.zeros(g_copy.size())
 div = torch.zeros(g_copy.size())
 output = torch.zeros(v_copy.size()) # Create tensor to hold the output, values initialised
to zero

 # Nested loop to calculate the norm and the division of g with the norm
 counter = 0 # Used to obtain value of v in order
 for i in range(v.size()[0]):
 for j in range(v.size()[1]*v.size()[2]):
 square_sum[i] = square_sum[i] + (v_copy[counter] * v_copy[counter]) # Square v
and accumulate
 counter = counter + 1 # Each iteration of inner loop, continue to obtain new values
of v
 norm[i] = torch.sqrt(square_sum[i]) # Once sum of squares has been completed, perform
square-root
 div[i] = g_copy[i] / norm[i] # Divide

 # Nested loop to calcuate the multiplication of v with (g/norm(v))
 counter = 0
 for i in range(v.size()[0]):
 for j in range(v.size()[1]):
 for k in range(v.size()[2]):
 output[counter] = v_copy[counter] * div[i]
 counter = counter + 1

 # Post-processing
 return output.reshape(v.size())

84

APPENDIX L VIVADO HLS CODE FOR GRUCELL

#include <ap_axi_sdata.h> // Needed for Fixed-point datatype

// Constants
#define SIZE 64
#define W_SIZE 192*SIZE
#define B_SIZE 3*SIZE
#define OFST1 2*SIZE
#define OFST2 OFST1+W_SIZE
#define OFST3 OFST2+W_SIZE
#define OFST4 OFST3+B_SIZE
#define TOT_INPUT OFST4+B_SIZE
#define TOT_OUTPUT B_SIZE

// Structure for stream items
struct datatype {
 float data;
 bool last;
};

typedef ap_fixed<32,16> stream_fixed_type; // Fixed-point datatype of FIX_32_16

void sampleRNN_GRU(datatype input[TOT_INPUT], datatype output[2*TOT_OUTPUT]) {
#pragma HLS INTERFACE ap_ctrl_none port=return // No block-level protocol
#pragma HLS INTERFACE axis port=input // Declaring I/O as stream
#pragma HLS INTERFACE axis port=output

 // Variables
 int i, j, counter;
 stream_fixed_type x[SIZE], h0[SIZE], temp1;
 stream_fixed_type mult_temp[TOT_OUTPUT], out1[2*TOT_OUTPUT] = {},
mult_temp2[TOT_OUTPUT];
 stream_fixed_type w_ih[W_SIZE], b_ih[B_SIZE], w_hh[W_SIZE], b_hh[B_SIZE];
 bool last[2*TOT_OUTPUT] = {};
 last[2*TOT_OUTPUT-1] = true; // Setting the last flag HIGH for the last element

 // The following loops are segregating the data from the stream into their respective
variables
 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 x[i] = input[i].data;
 }

 for (i = 0; i < SIZE; i++) {
#pragma HLS PIPELINE
 h0[i] = input[i+SIZE].data;
 }

 for (i = 0; i < W_SIZE; i++) {
#pragma HLS PIPELINE
 w_ih[i] = input[i+OFST1].data;
 }

 for (i = 0; i < W_SIZE; i++) {
#pragma HLS PIPELINE
 w_hh[i] = input[i+OFST2].data;
 }

 for (i = 0; i < B_SIZE; i++) {
#pragma HLS PIPELINE
 b_ih[i] = input[i+OFST3].data;
 }

 for (i = 0; i < B_SIZE; i++) {
#pragma HLS PIPELINE
 b_hh[i] = input[i+OFST4].data;
 }

 // Loop performing 2 matrix multiplications and vector additions
 counter = 0;

85

 for (i = 0; i < TOT_OUTPUT; i++) {
 mult_temp[i] = 0; // Make sure the values are zero initially
 mult_temp2[i] = 0;
 for (j = 0; j < SIZE; j++) {
#pragma HLS UNROLL factor=16 // Matrix multiplication
 mult_temp[i] = mult_temp[i] + (w_ih[counter] * x[j]);
 mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j]);
 counter++;
 }
 out1[i] = mult_temp[i] + b_ih[i]; // Vector addition
 out1[i+TOT_OUTPUT] = mult_temp2[i] + b_hh[i];
 }

 // Send output to the stream
 for (i = 0; i < 2*TOT_OUTPUT; i++) {
#pragma HLS PIPELINE
 output[i].data = out1[i];
 output[i].last = last[i];
 }

}

86

APPENDIX M VIVADO HLS CODE FOR WEIGHT NORMALISATION
(64X64X1)

#include <ap_axi_sdata.h> // Needed for Fixed-point datatype.
#include "hls_math.h" // Needed for the square-root function.

// Constant definitions. Changing these allows the modification of the dimensions.
#define G_SIZE 64
#define V_LAYERS 64
#define V_ROWS 64
#define V_COL 1
#define V_SIZE V_LAYERS*V_ROWS*V_COL
#define TOT_INPUT G_SIZE+V_SIZE

// Structure to bring in items from the stream.
struct datatype {
 float data;
 bool last;
};

typedef ap_fixed<32,16> fixed2; // Fixed-point datatype FIX_32_16

void compute_weight_2(datatype input[TOT_INPUT], datatype output[V_SIZE]) {
#pragma HLS INTERFACE ap_ctrl_none port=return // No block-level protocol
#pragma HLS INTERFACE axis port=input // Declaring the I/O as stream
#pragma HLS INTERFACE axis port=output

 // Variable Declaration
 fixed2 norm[G_SIZE] = {}, v_in[V_SIZE], output_temp[V_SIZE];
 int i, j, k, counter, counter2;
 bool last[V_SIZE] = {};
 last[V_SIZE-1] = true; // Pre-setting the last variable's last element as HIGH.

 // Bringing in the input v.
 for (i = 0; i < V_SIZE; i++) {
#pragma HLS PIPELINE
 v_in[i] = input[i].data;
 }

 // Similar design to the software version created.
 counter = 0;
 counter2 = 0;
 for (i = 0; i < G_SIZE; i++) {
 norm[i] = 0; // Making sure it is zero before accumulating
 for (j = 0; j < V_ROWS*V_COL; j++) {
#pragma HLS UNROLL factor=16
 norm[i] = norm[i] + (v_in[i] * v_in[i]);
 counter++;
 }
 norm[i] = ((fixed2)input[V_SIZE+i].data) / hls::sqrt(norm[i]); // Using fixed-
point square-root
 for (j = 0; j < V_ROWS*V_COL; j++) {
/* Since this accelerator is used in two scenarios, when it is alone, keep UNROLL factor at
32, otherwise 16.
 * Done since there is lack of space.
 */
#pragma HLS UNROLL factor=32
 output_temp[counter2] = v_in[counter2] * norm[i];
 counter2++;
 }
 }

 // Sending the data back out through the stream.
 for (i = 0; i < V_SIZE; i++) {
#pragma HLS PIPELINE
 output[i].data = output_temp[i];
 output[i].last = last[i];
 }

}

87

APPENDIX N VIVADO HLS CODE FOR WEIGHT NORMALISATION
(256X64X1)

/* Same as the code for v dimension: 64x64x1 & g dimension: 64x1x1.
 * But now the Constants are set to v dimension: 256x641 & g dimension: 256x1x1.
 * The UNROLLING factors have also changed.
 */

#include <ap_axi_sdata.h>
#include "hls_math.h"

#define G_SIZE 256
#define V_LAYERS 256
#define V_ROWS 64
#define V_COL 1
#define V_SIZE V_LAYERS*V_ROWS*V_COL
#define TOT_INPUT G_SIZE+V_SIZE

struct datatype {
 float data;
 bool last;
};

typedef ap_fixed<32,16> fixed2;

void compute_weight_64_256_16(datatype input[TOT_INPUT], datatype output[V_SIZE]) {
#pragma HLS INTERFACE ap_ctrl_none port=return
#pragma HLS INTERFACE axis port=input
#pragma HLS INTERFACE axis port=output

 fixed2 norm[G_SIZE] = {}, v_in[V_SIZE], output_temp[V_SIZE];
 int i, j, k, counter, counter2;
 bool last[V_SIZE] = {};
 last[V_SIZE-1] = true;

 for (i = 0; i < V_SIZE; i++) {
#pragma HLS PIPELINE
 v_in[i] = input[i].data;
 }

 counter = 0;
 counter2 = 0;
 for (i = 0; i < G_SIZE; i++) {
 norm[i] = 0;
 for (j = 0; j < V_ROWS*V_COL; j++) {
#pragma HLS UNROLL factor=16 // Same as the other design
 norm[i] = norm[i] + (v_in[i] * v_in[i]);
 counter++;
 }
 norm[i] = ((fixed2)input[V_SIZE+i].data) / hls::sqrt(norm[i]);
 for (j = 0; j < V_ROWS*V_COL; j++) {
#pragma HLS UNROLL factor=64 // Unrolled completely
 output_temp[counter2] = v_in[counter2] * norm[i];
 counter2++;
 }
 }

 for (i = 0; i < V_SIZE; i++) {
#pragma HLS PIPELINE
 output[i].data = output_temp[i];
 output[i].last = last[i];
 }

}

88

APPENDIX O VIVADO 2018.2 COMBINATION ACCELERATOR WEIGHT
NORMALISATION BLOCK DESIGN

	Final Report For Printing 1.pdf
	Pages from Hardware Accelerator for Recurrent Neural Network-Based Sound Synthesis 3.pdf
	Hardware Accelerator for Recurrent Neural Network-Based Sound Synthesis Final Submission 3.pdf
	ABSTRACT
	ACKNOWLEDGEMENTS
	Statement of Originality
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Abbreviations and Symbols
	List of Changes
	1 Introduction
	1.1 Problem Statement
	1.2 Aim
	1.3 Thesis contribution

	2 Literature Review
	2.1 Sound Synthesis
	2.2 Neural Networks
	2.1
	2.2
	2.2.1 Recurrent Neural Networks
	2.2.2 Co-existing NN-based Sound Synthesis

	2.3 Hardware Accelerators
	2.3
	2.3.1 Hardware Accelerators for Neural Networks
	2.3.2 Field Programmable Gate Array-based Accelerators

	2.4 Critical Review

	3 Methodology & Design
	3.1 Methodology
	3.1.1 Model Selection
	3.1.2 Python Profiler
	3.1.3 Accelerator Design
	3.1.4 Verification and Evaluation

	3.2 Summary

	4 Framework
	4.1 Development
	4.1.1 Environment Setup
	4.1.2 Accelerator Design
	4.1.3 Generating Bitstream
	4.1.4 Embedding an Accelerator

	4.2 Utilizing the Framework

	5 Accelerating SampleRNN
	5.1 Dependencies
	5.2 Profiling
	5.2.1 Top-level Profiling
	5.2.2 In-depth Profiling

	5.3 Identifying Bottlenecks and their Analysis
	5.3.1 Gated Recurrent Unit (GRU)
	5.3.2 Weight Normalisation

	5.4 Hardware Design & Integration
	5.4.1 Using the AXI Stream
	5.4.2 Fixed-point Datatype
	5.4.3 Enhancing Computations
	5.4.4 Accelerator Specifications

	6 Results & Analysis
	7 Conclusions
	8 References
	APPENDIX A Revised Project Proposal
	APPENDIX B Logbook Summary Sheet
	APPENDIX C STeps to Port & Test PyTorch
	APPENDIX D Generic Vivado Block Design
	APPENDIX E Software Re-implmentation of RNN Layer
	APPENDIX F VIVado HLS Code for RNN Layer
	APPENDIX G RNN Layer Python Program
	APPENDIX H Steps to Port & Test LibROSA
	APPENDIX I Top-level Profiling Results
	APPENDIX J Line Profiling Results
	APPENDIX K Software Re-implmentation of Weight Normalisation
	APPENDIX L VIVado HLS Code for GRUCell
	APPENDIX M VIVado HLS Code for Weight Normalisation (64x64x1)
	APPENDIX N VIVado HLS Code for Weight Normalisation (256x64x1)
	APPENDIX O Vivado 2018.2 Combination Accelerator Weight Normalisation Block Design

