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ABSTRACT 

Neural Networks (NN) have created endless possibilities in the digital realms by 

allowing machines to be equipped with human-like cognitive skills. Computers now 

have the ability to perform tasks which no longer need to be explicitly programmed. 

Sound synthesis is a technique where analog or digital circuits are used to generate 

sound. NN based sound synthesis has been an ongoing area of research. Large 

networks are trained directly with time-sequences of audio samples rather than with 

extracted features from those samples. After training, these networks can 

independently produce new sounds with sonic characteristics similar to those used 

within training. Most implementations of such networks are not yet capable to generate 

sound in real time due to the massive computational complexity required to generate 

each audio sample. Providing a solution to this problem can lead to a breakthrough in 

sound synthesis, reimagining how sound is generated in gaming applications, 

cinematography, and other fields. Thus, the following research proposes the use of a 

high-performance platform featuring a Field Programmable Gate Array (FPGA) 

within a novel framework to accelerate NN kernels. A complex Recurrent Neural 

Network (RNN) based sound synthesis algorithm is selected as the reference 

application to design and evaluate the proposed hardware acceleration framework. In 

particular, the synthesis algorithm is profiled to identify computationally critical 

kernels. Kernel functionalities are then mapped to customized and parallel hardware 

accelerators, which are integrated, tested and evaluated against the original synthesis 

application. In this project, a low-cost FPGA platform is utilized and therefore real-

time computation is still not be possible. In general, the framework has showcased a 

speed-up of the execution time of an RNN kernel by 21 times, whereas for the selected 

sound synthesizer, the simulation results had indicated a speedup factor roughly 

between nine to 16 times faster. Moreover, this has also enabled the identification of 

hardware bottlenecks in the platform currently used. Ultimately, the proposed 

framework enables custom design and easy deployment on FPGAs of accelerators for 

NN kernels. 
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 INTRODUCTION 
The popularity of Neural Networks (NN) has rapidly increased in the last two 

decades. They allow computers to perform tasks which do not require explicit 

programming. Indeed, they do so by abstracting a model from data. This, together with 

the large amount of data collected in the digital age, is leading to a new era of 

computing. Although the NN concept is not recent, the computational complexity 

limited NN application until recent years. Major advancements in data storage and 

computing architectures has enabled NNs to be used in plenty of consumer 

applications. Some of which include, Automotive (Tian et al., 2018),  Medicine (Oktay 

et al., 2018), and Robotics (Levine et al., 2018). 

In this work, the focus is on a novel NN application in the field of sound 

synthesis, a technique using analog or digital circuits to generate sound. Recently, a 

variety of NN architectures have been used for this purpose, providing rich, unique 

sounds while reducing the cumbersome process to model acoustic bodies 

mathematically into circuits (Wyse, 2018). Although most of these implementations 

in literature optimize computation performances, they are not yet capable of producing 

sound samples at a real-time rate. 

Field Programmable Gate Array (FPGA) are chips which comprise of ‘islands’, 

known as Configurable Logic Blocks (CLBs), in a ‘sea’ of configurable connections 

(Xilinx, 2018a). The flexibility and computational power of FPGAs allow 

implementing any computationally expensive algorithm. Performances are typically 

higher than traditional Central Processing Units (CPU) as many operations can be 

allocated to run in parallel. These chips can be considered as an empty canvas, where 

endless designs can be ‘painted’ whichever way a developer demands it to function. 

In particular, hardware designed on FPGAs provide low latency, high bandwidth, and 

parallel execution, forming a suitable environment to implement accelerators 

dedicated to specific applications (Xilinx, 2018a). As seen in the literature, FPGAs 

have been used to speed up the computation of NNs. However, their application in the 

context of NN-based sound synthesis has yet to be explored. Notably, FPGAs can 

provide significant acceleration to the synthesis algorithm allowing real-time or near 

real-time execution. 
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1.1 Problem Statement 
In context to its many applications, sound synthesis requires real-time 

computation, such as for digital musical instruments and interactive sonic systems. 

This requires computing sound samples at least at a rate matching the sampling 

frequency. For instance, one of the frameworks proposed by Paine et al. (2016) has a 

production rate of 200 samples per second, whereas the required rate for high-quality 

sound is usually at least 16,000 samples per second or more (48,000 samples per 

second). If such systems with these capabilities were to be implemented using 

computers of today, they would require a dedicated accelerator alongside the CPU, 

which alone, would not be capable of supporting such sampling rates. 

To add to this problem, the existing models are benchmarked on expensive high-

end PCs with fast CPUs and GPUs acting as dedicated accelerators. However, they 

still do not produce audio at the rate required. Moreover, in real-time musical systems, 

resources are limited to smaller and low-power components. 

In this research, the adoption of small size FPGAs to accelerate sound synthesis 

is explored. With their flexible, parallel computing, and relatively low-power 

consumption for the performance they provide, they are ideal for this scenario. 

Although, when it comes to utilizing FPGAs, hardware design is a challenging aspect. 

Further, detailed knowledge of the algorithm is needed to identify parallelism and 

exploit in full FPGA resources.  

1.2 Aim 
The aim of this work is to accelerate a co-existing Recurrent Neural Network 

(RNN) based sound synthesizer while utilizing a System on a Chip (SoC) including a 

CPU and an FPGA. The target platform is significantly more efficient in terms of 

power and cost than those used in related works. Real-time performances may not yet 

be achieved however, a speed up factor equal or greater than what is achieved by 

expensive GPUs is aimed. In addition, a generic framework to accelerate other NN 

kernels will also be developed, while providing a simple development process to 

follow, essentially reducing the design-time needed. This anticipates to making 

FPGAs more of an option for developers seeking high performances. 

1.3 Thesis contribution 

The contribution of this thesis is the following: 

1. A computationally efficient hardware architecture for the RNN kernel, 

synthesizable on FPGAs. 
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2. An easy to use framework for implementation of complex NNs on FPGA, 

based on the porting and integration of PyTorch (2018) on a PYNQ (2018) 

platform. 
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 LITERATURE REVIEW 
This chapter discusses background and existing works within the sound 

synthesis and NN domains. The chapter is structured as follows: Section 2.1 includes 

an introduction to sound synthesis; Section 2.2 introduces NNs with a focus on sound 

generation; FPGA-based accelerator designs are discussed in Section 2.3; finally, 

Section 2.4 includes a summary highlighting the limitations of the state of the art, 

supporting the aim of this work. 

2.1 Sound Synthesis 
Sound synthesis is a technique to generate audio signals with well-defined sonic 

characteristics using analog or digital circuits, including software running on 

computers. It is used in many applications such as musical instruments, text-to-speech 

(TTS), sound design for games and films, music, and sonic interaction. 

There are many different types of sound synthesis. Traditionally, periodic 

waveforms such as a sine or a square wave were generated at different frequencies 

upon interaction with the synthesizer. This is usually coupled with a wavetable, which 

tabulates these periodic waves and others to playback when needed (Rise, 2014). To 

generate slightly more complex signals, the concept of Fourier series is applied. This 

suggests that any wave can be modelled as infinite summations of sines and cosines 

(Imperial College London, 2018), which is exactly what is done in additive synthesis 

(Smith III, 2018a). On the other hand, subtractive synthesis is where an oscillator 

signal is filtered with different cut-off frequencies until the desired output is reached. 

Another technique, known as physical modelling synthesis, incorporates 

complex mathematical equations to model acoustic bodies for mimicking their 

behaviour (Hind, 2018). Earlier techniques for this included using pre-recorded audio 

samples whenever an event was triggered. This indeed was a simple, easy-to-compute 

method, although, lacked realism and quality needed. Raghuvanshi et al. (2007) 

investigated the real-time production of sound using a physically based model for 

video game applications. The proposed system works as such: many objects within the 

video game are modelled using a spring-mass system before-hand. This system 

generalizes the geometry of the objects, since different shapes lead to different types 

of sounds being generated. Once this operation is complete, various “modes” are 

calculated using sinusoids with fixed frequencies and damping ratios. The modes 
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represent the sound to be generated by impulses on the certain mass of the object. For 

example, if the corner of a drum is impacted, a different sound is produced when 

compared to impact at the centre of the drum. During runtime, the combination of 

waveforms triggered are played with different ratios. 

The authors then aim to optimize the above stated approach to avoid having to 

model many modes per object. The technique described takes advantage of human 

auditory perception, where it is difficult to discriminate between frequencies played 

nearby, especially at higher frequencies, hence there is a reduction in the number of 

modes that need to be played if they fall within the range humans cannot perceive. 

Furthermore, techniques to reduce the number of sounds being synthesized were also 

applied, ultimately providing higher audio Frames Per Second (FPS).  

The approach used did allow an otherwise computationally expensive model to 

be able to produce audio at real-time. Although, the author could have also considered 

the phenomenon known as masking, where the audio of objects with higher amplitudes 

will disregard other audio samples within a nearby vicinity. Doing so will allow some 

audio to never be produced as it does not add to the listeners perception. 

A survey done by Serra (2007) outlines the trends of sound synthesis during the 

year 2007 and discusses the challenges which will be come upon in the future. The 

author states that the go-to method for real-time sound synthesis was the digital 

waveguide model, which provided an efficient algorithm. The model consists of many 

computational physical models which include delay lines, digital filters, and non-linear 

elements, utilized only for certain instruments (Smith III, 2018b). Generally, the 

models aim to depict the acoustic waves travelling. On the other hand, both corpus-

based concatenation (Schwarz, 2007) and spectral modelling methods exist where the 

audio is synthesized based on given descriptions using databases available. Hence, 

audio is simply concatenated together, producing a waveform. As future works found 

within the field of sound synthesis, the authors have suggested a few new techniques 

regarding the control, and feedback of models.  

2.2 Neural Networks 
A Neural Network (NN) is a computational structure mimicking the human 

brain. Introduced in the early 1940s by McCulloch and Pitts, NN contain layers of 

neurons, namely input, hidden, and output layers. These are interconnected together to 



 

7 

 

 

form a mesh network, where each connection has a weight associated with it, as 

illustrated in Figure 1. 

The weights are multiplied with the input to this connection and given to the 

next neuron. Neurons contain non-linear activation functions with thresholds which 

indicate whether or not a certain characteristic has been identified from the input. This 

is visible in Figure 2. During the training phase, a large set of inputs along with the 

desired output to the NN are presented, allowing the network to estimate the model (if 

any) embedded in the data (Li, 2017). The threshold (or bias) and weights are adjusted 

during this period, aiming to produce an output aligned with the ideal output presented. 

 

 

 

 

 

 

 

 

 

Figure 1 - (a) An example of a fully connected Neural Network. (b) A simple illustration of 
neuron connections to the first Hidden Layer neuron including the weights of the connections. 

 

Figure 2 - Operations within a neuron. I1, I2, and I3 are the inputs to the connections coming to 
this neuron. W1, W2, and W3 are the weights of the input connections. The inputs are multiplied 
and summed with a bias in the neuron. This value is evaluated upon being processed by a non-

linear function (usually a sigmoid or tanh). 
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Many NN architectures have been proposed including, but not limited to, Deep 

Neural Networks (DNN), Convolutional Neural Networks (CNN), and Recurrent 

Neural Networks (RNN). The difference between the networks usually relates to their 

structure, arrangement of the neurons, and training procedure. 

DNNs are similar to regular NNs but consists of multiple hidden layers instead 

of simply one. They are known to provide high performance when it comes to building 

complex models and perform feature extraction. A drawback of such networks is that 

they require lots of time in training, although with the rise of powerful processing, 

these networks are seemingly more practical. On the other hand, CNN comprise of 

convolutional layers which perform filtering using the convolution operator followed 

by the layers of a generic NN (Stanford University, 2018) used in image applications.  

2.2.1 Recurrent Neural Networks 

RNNs have successfully been used in sound synthesis, and therefore extremely 

relevant for this work. They provide the ability to use machine learning for applications 

where sequential outputs are needed one at a time. It consists of short-term memory 

modules and many feedback loops, allowing data to be correlated. A simple overview 

of the RNN system can be thought of as a regular neural network with a feedback as 

seen in Figure 3a, however, when unrolled, the system is broken down into many 

subsystems shown in Figure 3b. These cascade subsystems communicate to their 

successor the output of that timestep. The next subsystem now has two inputs: one 

corresponding to the current input, and secondly, the previous output.  

Figure 3 - (a) Basic concept of an RNN. (b) If (a) was to be unrolled in time, this will indicate how 
sequences are generated and how information progression occurs. Moreover, (b) clearly 

showcases the BPTT occurs when the weights are adjusted throughout these layers. 
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During the training phase of a regular NN, the weights are adjusted through 

verifying whether or not the output is valid. Once this is decided, the network provides 

a feedback, known as backward propagation, essentially changing the weights by 

performing partial derivatives of the error with respect to the weights. Following this, 

the gradient descent algorithm is used to make sure the weights are updated only to 

minimize the error. Within RNN, a mechanism similar to this, labelled Backward 

Propagation Through Time (BPTT) is actioned. Here, since the network consists of 

many subsystems, when the feedback is given, it can be thought of as propagating 

through time until the very first subsystem (Johnson, 2017). 

A problem related to RNNs is the vanishing effect of the gradient, whereby the 

network does not learn anymore due to the gradient being small, leading to no updates 

being made. Usually, when the gradient is calculated, BPTT leads to the multiplication 

of the gradient value by many matrices, causing the value to sometimes be very small. 

Similarly, the opposite effect may occur, where the values are extremely large, known 

as exploding gradients. This results in RNNs to have degraded performances and 

instability. A technique to resolve this issue is with the addition of Long Short-Term 

Memory (LSTM) modules. These replace the traditional short-term memory modules 

with slightly more complicated ones, which ensure to store important information for 

long, providing abilities to incorporate long-term dependencies.  

Setting aside the application studied by Graves (2013), a study of how complex 

sequences may be generated using LSTM RNNs is shown. The author particularly 

explained how RNN are ‘fuzzy’, as they do not simply generate outputs based on given 

training data but instead look more into the dependencies amongst data. Furthermore, 

having a large number of inputs (high dimensional) makes the network 

computationally expensive, but since RNNs are ‘fuzzy’, they do not encounter this. 

The LSTM cells, shown in Figure 4, allow the network to handle what is being stored 

in the cell with the help of another set of activation functions. It also is able to identify 

whether the stored information should affect the current time sample through the 

output gate, whereas the forget gate decides if at all this information should be kept 

any longer. 
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The author was able to generate complex sequences with credible results. With 

the feasibility of using such resource-expensive modules (LSTM cells) in question, 

they do pose as an essential component within RNNs. 

Furthermore, Chang et al. (2017) studied an extreme case of these problems 

through the generation of long sequences. This involves having to include extremely 

long-term dependencies, while maintaining short- and mid-term memory. The 

proposed architecture, labelled DilatedRNN, is a composite of skipped connections 

allowing fewer parameters, and a hierarchical design looking to store different 

dependencies through time. Further analysis on the dilated connections indicates that, 

when compared to regular RNNs, connections moving from one timestep to another 

are skipped by some proportion. Doing so will allow a significant improvement in 

speed through parallel execution, which lacks in regular RNNs. This is done by no 

longer having many interconnections, which usually implies that for the model to 

proceed in processing to the next timestep, the previous ones must be complete, else 

no input will appear to the current timestep. Instead, now that there are fewer 

dependencies, executing the various connected cells simultaneously improves 

performance by s times, where s is the number of skipped connections. In order to 

maintain long-term dependencies and avoid vanishing/exploding gradients, the 

architecture deploys the use of multiple hidden layers which have the parameter s 

increasing exponentially. Hence, it can be said that each layer/hierarchy takes into 

account different ranges of dependencies, where lower values of s incorporate short-

term dependencies and vice-versa. Results obtained through this methodology were 

competitive, however, the model achieves desired results only in some applications. 

Figure 4 - The LSTM cell (Graves (2013)) 
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Further, it is detailed that speed performances have been accelerated although it is 

unclear how long does it take for execution when compared to other models running 

on the same system. 

2.2.2 Co-existing NN-based Sound Synthesis 

Oord et al. (2016) proposed a neural autoregressive generative model, WaveNet, 

in a study to evaluate its performance for raw audio signal generation. The study 

specifically aimed to tackle the requirements posed by audio synthesis being a 

demanding task in terms of temporal resolution. Simply put, sound synthesis requires 

at least around 16,000 samples per second to be generated to produce decent quality 

output, whilst ensuring that the samples are correlated at different granularities. 

The model utilizes dilated causal convolutions, a method which can increase the 

receptive field (amount of connections from the input to the next layer. Also known as 

the filter size) without having to increase the computational cost significantly. It is 

important to have a larger receptive field so that more features can be extracted and 

considered. In addition, since each audio sample is stored as a 16-bit integer, and since 

the next audio sample must be generated by the previous ones through a probabilistic 

algorithm, the authors have used mu-law companding for compression, which makes 

the possibility of an audio sample from being 216 different values to just 256. This 

reduced the number of outcomes of the probability, making it easier to work with. 

Furthermore, additional parameters which alter the characteristics of the audio 

generated can also be provided to the model. 

Thorough testing had been conducted, where the Mean Opinion Score (MOS) 

was calculated based on listeners giving scores for sounds generated by the proposed 

model and other models. Results clearly indicated that the model proposed was 

preferred and thus proved that the autoregressive model can be used to implement such 

applications. On the other hand, another outcome of this work was that tests done on 

music generation indicated that the receptive field was vital, as the audio will not be 

acoustic otherwise. For instance, the current sample and previous many samples must 

have correlation when it comes to music, else random tones will be synthesized. All in 

all, Oord et al. (2016) addressed many challenges faced during the design of the model. 

They provided reasonings for their considerations for most aspects of the design, 
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comparing alternatives as well. Moreover, the authors do not analyse the rate at which 

sound is synthesized. 

Paine et al. (2016) proposed an algorithmic enhancement of the previous 

framework which drastically reduces the computational complexity of the network. In 

general, the authors took a deeper look at the redundant calculations being conducted 

in the original approach and replaced this with memory caches in the form of a queue. 

This then allows the network to avoid recalculating certain parameters during runtime, 

reducing the computational complexity from O(2L) to O(L), where L denotes the 

number of layers. The way the queues operate is, due to the original model utilizing 

dilated convolutions, outputs of each layer will be based on the ones many timesteps 

behind. Therefore, the queues will have varying length based on the dilation at each 

layer. Since the original model had an exponentially increasing dilation, the length of 

the queues will also exponentially increase as 2l, where l is the hidden layer number. 

In addition, the behaviour of the queue is first-in-first-out. This facilitates the 

fact the data stored initially will be of timesteps further away and is needed to be taken 

into account at first. Moreover, remodelling the system with the above stated changes 

allows a new interpretation of the network. Instead of being a CNN, it can now be 

thought of a multi-layer RNN, where the inputs to a neuron is the expected input plus 

a parameter from the queue (popped out of the queue). In result, it provides the output 

which is passed onto the next layer, and a new parameter pushed onto the queue. 

To verify if the new enhancements actually provide better performances, the 

network is compared with the original having the same trained parameters. It was clear 

that the new additions to the framework proves to be much more real-time oriented 

through its low variations when the number of layers is increased. Hence, it can be 

said the new model is much more predictable. On the other hand, the work presented 

by Paine et al. (2016) is among those measuring the amount of time taken to generate 

a single sample of audio. However, no details have been provided, other than the use 

of a GPU, on the specifications of the machine used for this purpose. Further analysis, 

illustrated in Figure 5, shows the frequency at which audio is produced indicating a 

mere 200Hz (one sample = 0.005secs with a single layer), whereas a larger model (15 

layers) would produce at 100Hz and 6.25Hz for the enhanced and original approaches, 
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respectively. These results clearly indicate significant room for improvement of the 

current state. 

 

 

 

 

 

 

 

 

Another model proposed by Mehri et al. (2016), SampleRNN, investigates audio 

generation using RNNs. This differs from the above model such that it does not utilize 

Deep Neural Networks (DNNs). Further, instead of dilated causal convolutions, a 

technique known as Truncated Backward Propagation Through Time (TBPTT) has 

been implemented. The problem this paper resolves is that audio signals have plenty 

of samples for a single word being spoken. This implies that any kind of audio 

generation needs to consider the fact that to produce an audio signal which is 

intelligible, it must come in with many samples put together. Previous methods 

involved compressing the signal, followed by identification and modelling of audio 

dependencies. However, when the signal was decompressed, the quality of the 

waveform was degraded. 

Therefore, Mehri et al. (2016) propose the use of RNNs to model the 

dependencies (feature-extraction, therefore reducing the samples that need to be 

generated). Although, RNNs themselves are not the best when it comes to producing 

a massive number of samples required in this application, the model proposed has a 

hierarchical implementation. Doing so compliments yet another requirement of audio 

generation, where dedicated hierarchies consider only audio samples with correlation 

with nearby samples and other hierarchies for samples far away. Similar to the work 

detailed in the previous subsection by Chang et al. (2017) however in another context. 

Figure 5 - Results from Paine et al. (2016). Here the Faster implementation is the red curve, 
whereas the blue curve represents the original WaveNet. 



 

14 

 

 

Hierarchies, called tiers, each look at the input samples differently. For instance, 

the highest tier, where the initial input is provided, considers dependencies at frame-

level. Whereas the for the lowest tier, analysis of data is considered at sample-level. 

Hence, each tier has its own frame size to identify dependencies from. Once the data 

is analysed, it is then provided to the tier below it, allowing dependencies from a large, 

down to a low range to contribute before producing an output.  

Note that each tier will have two sets of inputs (except for the topmost, which 

has one), where one represents the input of this tier at a certain timestep, while the 

second being the modelled dependencies coming from above the tier. Flowing down 

the tiers, data is up-sampled to match timing resolutions, ensuring computation is 

mathematically appropriate. The computation done is between the current inputs 

multiplied by the weights, added to the data from the tier above. Followed by the up-

sampling mechanism (perforated: concatenate zeros and perform linear convolution). 

Since the lowest tier does not require to model long-range dependencies, the 

authors have utilized a memoryless Multilayer Perceptron (MLP) network. This is the 

generic type of NN which has been described earlier and is chosen since it does not 

demand as much resources as RNNs. For the output of the network, linear quantization 

is performed to discretize the values, followed by a softmax layer. The functionality 

of this layer is to map a vector into a probability distribution, where each element of 

the vector is given a probability. To further enhance the results here, mu-law 

companding, which is a non-linear quantisation technique could have been 

investigated, reducing the number of probabilities to consider as applied by Oord et al. 

(2016). 

When Oord et al. (2016) designed WaveNet, they did not consider RNNs due to 

their prolonged training times, however, the authors here tackle this through TBPTT. 

Similar to BPTT but with long sequences being shortened, so the updates do not have 

to go as far as the beginning of the network, which they technically would have to 

otherwise. The authors here have presented a framework which provides competitive 

results, where human listeners mostly preferred the output of this model than any other 

compared with. The author also provided an analysis of which method to use among 

Gated Recurrent Units (GRUs) (explained below) and LSTM, suggesting the former 
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performed slightly better. On the other hand, the author has not considered providing 

timing performances, failing to state whether audio production is fast enough. 

The inputs provided for training a NN-based sound synthesizer are critical 

information on the desired sound (i.e. the pitch, amplitude, instrument type) and an 

audio sample. Wyse (2018) studied the effect of data-driven sound synthesis models 

with real-valued parameters. The model requires an initial input audio sample 

concatenated with parameters, ultimately forming a vector. Once provided, the model 

continues to generate audio samples (previous output is current input). Though, at each 

timestep, the parameters are continuously provided, giving an opportunity to change 

sound characteristics during runtime. 

In addition, the net also includes GRUs. These are like LSTM cells, with a 

similar aim to resolve gradient problems with RNNs stated earlier. GRUs can 

selectively store dependencies from different time instances although it does not 

contain memory cells. They are far less complicated in design and outperform LSTM 

cells in certain applications (Chung et al., 2014). With regards to the design proposed 

by Wyse, there exist a four-layer RNN with GRUs, all consisting of feedback 

connections to itself. Both input and outputs are processed through linear mappings, 

where the vectors are decoded and encoded, respectively. Since the training parameters 

are implicit (many parameters included rather than primarily one, hence model 

considers multiple input variations) and not conducted for all the possibilities of each 

parameter, the challenge would be how the model will react to a certain parameter 

changing. 

The author only provides an overlook on the pitch parameter which, when 

trained on two extreme pitches only and then provided inputs of linearly increasing 

pitch between these two points, provides results which successfully interpolate 

between the two trained points. But it is worthy to mention that performance is much 

better when near to trained data. Furthermore, another challenge within such an 

architecture is to do with the responsiveness of the network to changes in the 

parameters. A problem seen in previous models by the author were discrepancies in 

desired output with small errors accumulating due to large variations in the input when 

compared to the trained inputs. But the method chosen here does not allow such effects 

to occur. Once again, a model is trained with extreme pitches. When parameters are 



 

16 

 

 

changed during runtime, and the new inputs which are never seen by the network are 

passed, the system was able to react and provide meaningful alterations. 

The author does not investigate other parameters being changed but does 

mention that the pitch is something rather perceived than seen clearly (never perfect 

periodicity). This makes the pitch an attribute harder to correlate. On the other hand, 

as future works, the author claims that the system is not yet real-time however, fails to 

mention any quantitative statistics. 

In another attempt to improve the speed performances of WaveNet, 

Kalchbrenner et al. (2018) have synthesised WaveRNN. The authors identified an 

equation accounting for the time taken to generate audio samples and thus tackle each 

variable to achieve real-time capabilities: 

𝑻𝑻(𝒖𝒖) = |𝒖𝒖|�(𝒄𝒄(𝒐𝒐𝒐𝒐𝒊𝒊) + 𝒅𝒅(𝒐𝒐𝒐𝒐𝒊𝒊))
𝑵𝑵

𝒊𝒊=𝟏𝟏

 (1) 

T(u) is the time taken to produce u samples per second. Each sample consists of 

processes occurring at N layers, where the time taken by operations within each layer 

can be broken down into computational (c(opi)) and overheads (d(opi)). Computational 

time is the actual time taken for executing operations (i.e. an addition). Whereas, the 

overhead would be the time taken in invoking the operations (i.e. calling the function 

to perform addition). One of the major changes within the proposed model here is that 

it utilizes a single-layer RNN instead of the original CNN within WaveNet. Doing so 

enables reduction in the value of N by nearly 12 times, without degrading sound 

quality. On the other hand, computational costs can be reduced when the parameters 

in the network are reduced. This is fulfilled by a technique known as weight pruning 

(Narang et al., 2017), where analysis of the network weights for recurrent and linear 

layers is conducted whereby elimination of the weights contributing the least to the 

outputs is actioned, resulting in a smaller, sparse network. Lastly, the term u 

representing the samples produced must also be minimized as it is multiplicative term 

in the time equation. For this, the author proposes sampling in batches, where the 

dependencies will occur among batched samples which are much fewer than 

otherwise. 

With the above changes, the network uniquely becomes much more suitable for 

an embedded system than ever before as there is a reduction in memory and 
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computational costs. The author also provides information on running such a model 

on mobile CPUs proving its effectiveness, achieving 19,800 samples/sec (minimum). 

Additionally, overhead costs are minimized through enabling GPU usage within the 

TensorFlow library (TensorFlow, 2018). Hence, with the upcoming of GPUs on 

mobile devices, the proposed model can lead to many new applications of similar kind. 

The work exclusively situates itself as one of the only real-time models, although it 

would be noteworthy to test the system architecture to produce raw audio rather than 

simply Text-to-Speech (TTS). 

2.3 Hardware Accelerators 
Hardware accelerators are when special hardware devices, such as GPUs and 

FPGAs, are used to perform tasks outside of the CPU to provide faster execution. 

Moreover, hardware accelerators also prove to be effective when it comes to power 

consumption and large data bandwidth (Intel®, 2018). 

2.3.1 Hardware Accelerators for Neural Networks 

Since NNs are computationally expensive algorithms, especially with larger 

models, the use of hardware was expected to accelerate them. Works presented by Oh 

and Jung (2004) demonstrates an implementation of NN-based text detection system 

on GPUs. The authors look at taking the most repeated operation of a NN, which in 

that case was the multiplication between an input and a weight with an addition of the 

bias, placing them in three separate matrices for each layer. These variables are first 

transferred to the GPU. Next, the equation is computed in one-shot, taking advantage 

of the repetitive nature and parallel computation possible. With a simple test run, the 

GPU provided a 20-fold increase in performance. Although the results are not shown 

with extensive details, nor have many test cases been analysed. Overall, a simple 

concept of how GPUs can be included within NNs has been showcased. 

2.3.2 Field Programmable Gate Array-based Accelerators 

An alternative to using GPUs are FPGAs. These are reconfigurable hardware 

that, off the box, do not provide any functionality. They are required to be programmed 

(design hardware and download bitstream) in order to implement a specific 

computational architecture. For development purposes, FPGAs are well-known for 

providing a cheaper, quicker (production, since they only need to be designed and 

uploaded to the chip), but slower and more power-hungry alternative to Application 

Specific Integrated Circuits (ASICs). 
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Chang et al. (2015) propose a RNN-based implementation on an FPGA. RNNs 

are difficult to accelerate as they are naturally sequential, however, due to their 

popularity, there exists a need to investigate optimizations for such networks. The 

model created includes the usage of a two LSTM layers and 128 hidden units. As for 

the architecture design here, the LSTM cells do not look at the stored data to decide 

whether it must be forgotten or not. Instead, there are many functions which control 

this. In hardware, this module consists of a three gate and one element-wise 

submodules. The gate submodule consists of Multiply-Accumulate (MAC) blocks 

which perform the multiplication and addition of the weights being multiplied with the 

input. This is performed for the current timestep and previous output simultaneously. 

Following this, the outputs are added and passed on to the non-linear function blocks, 

which compare if the result activates them or not. This information is then passed on 

to the next layer and the process is repeated. Data coming in is taken from the Direct 

Memory Access (DMA) block which needs to be synchronized using buffers. Another 

aspect which must be considered here are the datatypes. For the inputs of the LSTM 

cell, the data is brought from 32-bit to 16-bit, but after the multiplications, the datatype 

is 32-bit once again. The data format of the 16-bit numbers are fixed point, with 8 bits 

for both the fractional and integer parts. 

Once the data is calculated from the gate submodule, it is passed to the element-

wise submodule, where the final output is calculated along with a control signal. The 

control signal decides whether the output must be stored or not. The module is 

synchronised into sequential stages, which utilize parallelism within. Among the 

stages, signals are stored as internal vectors for the next stages. The network, due to 

the limitations on datatype, is not as accurate as other implementations. However, 

other FPGA models showcased far worse performances due to using floating-point. 

Results shown regarding the execution time are vague as they only represent 

operations per second. A gap in this architecture would be that sequential stages were 

still used. If it is possible to eradicate this, far better performances can be achieved. 

On the other hand, the proposed solution shifted the complete network onto the FPGA, 

instead, a hybrid design involving the use of a CPU plus FPGA can improve results 

(CPU does perform certain tasks much better). 
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Huynh (2017) states that for the implementation of DNNs, general purpose 

hardware is not suitable since they are slow, expensive and have a high power 

consumption. Instead, the use of reconfigurable FPGAs is applied. Designing 

dedicated hardware for this include considerations of datatypes for the inputs and 

weights, and how these will be stored in memory. These factors ultimately decide how 

fast and accurate the network will be. The framework proposed provides the user the 

opportunity customize the structure of the network to their own needs through changes 

made in the VHDL program. It uses 16-bit half-precision floating point for 

data/weights within the layers of the network. It works such that there are control 

signals which indicate which layer is being computed currently, and so data is pulled 

out of memory for that layer. The network is formatted such that there are many neuron 

blocks in the network. Within these neuron blocks, the first step conducted is the input 

multiplied by the weight of the connection to the neuron. After this, the activation 

function is evaluated. These steps within the neuron block are conducted sequentially. 

Since a layer has many neurons, the many blocks, in parallel, perform this execution.  

Testing is done using the Modified National Institute of Standards and 

Technology (MNIST) hand-written dataset. The system was able to gain high resource 

utilization, while maintaining accuracies. It is vital to mention accuracies here as the 

datatype used will directly affect this. There were other models which had better 

performances, but the design here proved to be easier to use in terms of training. On 

the other hand, the author only investigates fully-connected DNNs, having only a 

single physical computing layer. In addition, the author mentioned about being power 

conservative however no results have shown how this compares to other 

implementations. Moreover, a possible pre-fetch of data can also be considered while 

computation is occurring to avoid waiting for data to be pulled. Also, as additional 

results, performance in terms of speed would provide further analysis on how the 

model developed competes. Lastly, the design methodology looks at simply 

implementing the complete network on the FPGA but there might be some operations 

that may be better to have implemented on a CPU, thus creating a hybrid model, as 

mentioned earlier. This of course requires further in-depth as to what actually are the 

bottle-necks within DNNs. 
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In contrast to the above work, Guan et al. (2017) study the runtime acceleration 

of LSTM-RNNs on an FPGA. The authors do perform profiling of a selected 

application to analyse segments of the network which are bottle-necks currently. 

Results indicate that the program spends most time inside the LSTM cells which have 

a complex algorithm as mentioned earlier. Another aspect of the network which 

requires enhancing are the activation function, most of which either involve division 

or complex mathematical operations (i.e. tanh). The enhancements performed for the 

above two problems is as follows. The LSTM cells are broken down into smaller 

modules within the cell, allowing the individual components to execute in parallel. 

Data coming in and out are buffered and distributed using crossbar technique. With 

regards to the activation functions, these are replaced by simpler operations such as 

addition and shifting which mimic the complex non-linear functions. The 

approximation of the functions does lead to inaccuracies, although when calculated, 

the authors found subtle differences. 

Another key issue when designing hardware is the communication between 

memory modules and the FPGA. This usually adds to the overhead cost of the network. 

To tackle this, the authors include revamping the matrices in memory so that the 

accesses are fewer and in a regular pattern. Moreover, a data dispatcher is designed to 

improve bandwidth. For this purpose, the AXI4Lite bus (Xilinx, 2011) is used, which 

is a communication interface. The model was then tested, providing up to 20 times 

faster execution time. The resource utilization was moderate. Comparison with another 

model were inconsistent as the size of the networks differed greatly. As a deeper 

analysis, the author identified the LSTM cells as a crucial factor in execution of the 

network, however, an alternative mentioned earlier was the use of GRUs, which are 

essentially far less complex. It would be worth testing the performance with GRUs and 

seeing the speed-up factor, if any. In addition, AXI4-Steam interface was not 

considered by the authors. These provide means through which larger amount of data 

to be transmitted together (Xilinx, 2011). Lastly, the model uses 32-bit floating point 

datatype, which is expensive to use but would definitely provide high accuracy, which 

were not recorded. 

Hao and Quigley (2017) have also designed an accelerator on an FPGA but for 

Deep RNNs (DRNNs), aiming to prove how the FPGA-based technology can be 
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brought into Embedded Systems (ES). The reason why this research is significant is 

that most implementations of NNs have often been implemented using high-end CPUs 

and GPUs. The case with ESs is that they do not have this luxury, nor do they have 

soft power or memory constraints, leading to fewer DNN implementations. The 

proposed solution involves building a DRNN using Theano, a library which the author 

claims to be most suitable for a 32-bit Operating System (OS). It also requires less 

memory than alternatives which is key for the purpose. The board used for the 

implementation is the Xilinx PYNQ-Z1. This uniquely provides an dual-core ARM 

Cortex A9 microcontroller simultaneously with an FPGA (Digilent Inc, 2018). The 

combination of being able to develop Python applications and include hardware 

acceleration together makes this platform extremely powerful. 

With respect to the NN design, the model houses three hidden LSTM layers. The 

computation within these layers to drive the logic is programmed through Theano. 

Interconnections among these layers are as discussed before although at the output 

layer, the use of a softmax function is actioned. To train the network, the error 

calculation is done through the cross-entropy function and applied using the Stochastic 

Gradient Descent (SGD) method. This is exactly what was explained earlier regarding 

gradient descent, where partial derivatives of the error are taken with respect to the 

weights and adjusted. As for the accelerator, the hardware designed performs matrix 

multiplications and addition, as seen in designs above as well. To further increase the 

performance capabilities, the design incorporates five processing elements as the 

matrices are large. Unlike the previous work, the authors here have included the AXI 

Stream for batch data transmission from the memory to the FPGA. Hence, having 

multiple processing elements and providing large data through this interface provide a 

design which goes hand-in-hand. 

Overall the accelerator can perform 2500 additions and multiplications each, 

while having a latency of only 250ns. Moreover, the authors do not highlight how the 

datatype, which was fixed point, selected (only mentioned in results) affected the 

accuracy of the overall model. Also, no information had been provided on the structure 

of the datatype such as how many bits were allocated for the integer and fractional 

parts. Furthermore, the hardware design could have included many other segments of 

the NN, perhaps profiling and further investigating the LSTM modules. Note that the 
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work mentioned earlier did state that most time was spent within the LSTM cells, 

which contradicts the work here. Since the authors aimed at bringing such architectures 

to ESs, a timing analysis other than operations per second would definitely analyse 

whether this was achieved. In addition, lack of depth was shown in to how the Overlays 

(library to communicate with hardware design) were embedded into the design. Lastly, 

the authors fail to recognise other NN libraries such as PyTorch, which indeed is 

powerful especially when using Python.  

2.4 Critical Review 
The literature reviewed in this chapter has provided an extensive breakdown on 

the current state-of-the-art models. As future works found within the field of sound 

synthesis, a few new techniques regarding the control, and feedback of models can 

enhance performances. Moreover, sound synthesizers must look at the auditory 

perception of humans to eradicate generation of certain waveforms within algorithms, 

essentially reducing the computations required. In terms of NN implementations of 

sound synthesizers, a common gap seen is that authors do not express how much time, 

approximately, it takes to generate a second of audio, similar to what was done by 

Paine et al. (2016). Results shown by this author clearly indicated that even the model 

deemed faster than one of the state-of-the-art can merely produce 200 samples per 

second which is extremely slow. Although time performances are platform dependent 

(i.e. faster CPU provides faster execution), authors can execute the work they compare 

on the very same platform and mention the specifications of it, informing the reader or 

other researchers how the results were obtained. This will provide a fair and 

informative conclusion. Moreover, the FPGA designs studied included many 

sequential stages (i.e. Huynh (2017)), which indeed can be remodelled or executed on 

a CPU as a hybrid architecture. Usually, when hardware is designed, synchronisation 

and communication become key factors which must be taken into account for the 

success of the design. Indeed, these factors add to the complexity of using FPGAs and 

other hardware as some techniques are not conspicuous, requiring expertise. 
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 METHODOLOGY & DESIGN 
This chapter details on the methodology to systematically approach the problem 

discussed in the previous sections. First, we provide a high-level description. This is 

followed by an in-depth look into the system design highlighting its robustness.  

3.1 Methodology 
The proposed design aims at enhancing the speed at which audio is generated by 

an RNN-based sound synthesizer. A breakdown of the approach is shown in Figure 6. 

To begin with, the model chosen is a PyTorch implementation of SampleRNN 

coded by Kozakowski et al. (2017). The system was originally designed by Mehri et 

al. (2016) as examined earlier which consisted of a hierarchical design, as seen in 

Figure 7.  

Figure 6 - Flowchart of the methodology. 
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As the network unfolds from Tier 3 down to Tier 1, the memory granularity 

increases or, in other words, the scope at which sound is correlated changes from a 

broader range right down to samples near each other. The broader range tiers consist 

of GRUs whereas the sample-level tiers are convolutional layers. 

In order to accelerate any model successfully, it is essential to identify the 

bottlenecks of the system. To perform such analysis, the program implementing the 

RNN-based synthesis must be profiled. Profiling is a technique monitoring code 

execution, resulting with details on how much time is spent in each function and how 

many times the function is called. For the current scenario, profiling must be conducted 

on the program which produces the audio only (i.e. network inference). Once we train 

the network, the segment generating audio can be isolated and profiled, where the 

functions requiring the most amount of time to execute will be further analysed. It is 

important to understand the functionality of the time-consuming commands as its 

feasibility on the FPGA will be in question. For instance, if a command is found to be 

accountable for 90% of the execution time, however, if it cannot be recreated on the 

FPGA to mimic its behaviour, significant acceleration will not be achieved. Therefore, 

the commands must be taken to the lowest level possible (function calling another 

function and so on) to be able to judge this. 

Once the analysis is complete and it is known what operations should be 

designed on the FPGA, it must be implemented using one of the four methods as 

follows. First of which involves using Vivado HLS by Xilinx to create an Intellectual 

Figure 7 - SampleRNN unrolled design by Mehri et al. (2016) 
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Property (IP) using C Synthesis. On the other hand, another technique considers 

implementing a visual design using System Generator (another tool by Xilinx) which 

will also be exported as an IP. Moreover, a combination of these two methods can also 

be incorporated. Both these tools are available in the Design Suite by Xilinx (Vivado, 

2018). Alternatively, the design can also be programmed in VHDL. More details will 

be given on these in upcoming subsections. 

Regardless of the technique applied, the designed components will be 

continuously verified. Testing will be done to ensure that the model designed in 

hardware provides the correct output for a set input, whereas evaluation will also then 

be conducted to measure the speed-up factor.  

To be able to generalise the framework which will accelerate any RNN-based 

application, all design considerations must be taken into account. This will allow 

developers using this framework to understand what steps will make their designs 

perform better. Furthermore, FPGA design is challenging and so the proposed 

framework integrates an existing deep learning programming environment with FPGA 

deployment tools. This simplifies designing and deploying accelerators for NNs, 

allowing developers to implement and evaluate application-specific accelerators. 

3.1.1 Model Selection 

The model selection was done after attempting to execute source codes of 

various models discussed in the literature and testing them on a PC. SampleRNN was 

one of the models which provided great flexibility in the way the program can be used. 

For example, multiple flags can be provided to alter the size of the network, whether 

to use CPU or GPU and so on. This implies that the model can be tweaked with ease 

without having to modify the actual code. Although, when required, the program is 

packed with many classes which can be used to achieve more personalised 

requirements. Furthermore, preliminary results indicate that the model was able to 

produce audio at 49.3Hz and 441.5Hz on recommended settings, using CPU and GPU 

respectively. The results are clearly evident that there is a significant amount of room 

for improvement.  

3.1.2 Python Profiler 

The purpose of a profiler is to provide statistical information for a piece of code 

upon execution. This information may include, the amount of time spent at a 
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command, the amount of times a function was called and more. ‘cProfile’ and 

‘pprofile’ are profilers recommended by the Python documentation (2018). The former 

provides an easy-to-use, lightweight mechanism (less overheads, much better for 

embedded platforms) which will be utilized within the analysis here. An example is 

shown in Figure 8. Between enable and disable, the function calls for generating audio 

will be placed. 

 

 

 

 

 

 

In Figure 8, alongside ‘cProfile’, another library known as ‘pstats’ is also added. 

This allows developers to manipulate and showcase data in different methods. For 

instance, it is currently set to sort data by the cumulative time spent (usually the case 

when a function is called more than once). In addition, the ‘io’ library allows the pstats-

manipulated data to be stored in a string, which is later displayed. Note that the profiler 

itself does provide raw data (ps.print_stats()). 

Once this top-level analysis is conducted, the results help narrow down the 

search for bottlenecks from the complete program down to functions used within. 

Although, most functions will perform a variety of steps before returning, simply 

knowing which function occupies most of the CPU time within a program is not 

sufficient to identify the actual bottleneck just yet, but a step closer is accomplished.  

Hence, once the top-level profiling has been completed, an in-depth look into those 

time-consuming functions are necessary at line-level. This can be done using a tool 

developed by Kern (2019), wherein handles are placed just before the function bodies 

of whichever function is being aimed to be further studied. The tool is then invoked 

on the python program using command-line, where execution and monitoring begins, 

finally providing results which dictate how much time was spent, in seconds and as a 

percentage, at each line of a function throughout the program execution. Doing so will 

allow to keep tasks which are indeed handled by the CPU far better to not be ported 

Figure 8 - cProfile example taken from Python Documentation (2018). 
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onto hardware, which will save development time and resources available on the 

FPGA chip. 

3.1.3 Accelerator Design 

The proposed framework will be based on the Xilinx PYNQ-Z1 board (Digilent 

Inc, 2018). The Systems on Chip (SoC) uniquely provides a single platform solution 

containing both a microcontroller, and an FPGA. Integration between the 

programmable (RISC microcontroller) and reconfigurable (FPGA) components is 

done through a concept of a software library labelled as Overlays. In conjunction with 

a powerful Python developing environment and a Debian-like Operating System, the 

board places itself perfectly for the purpose. The board has been used to accelerate 

Deep Recurrent Neural Networks by Hao and Quigley (2017). What the authors of this 

paper have failed to take into account is one of the most competitive NN libraries, 

PyTorch (2018a). This research will also be the first to execute PyTorch-written code 

on the PYNQ-Z1, which is expected to open a gateway of new applications and their 

enhancements. 

Figure 9 and Figure 10 compare regular execution with the one proposed here. 

In particular, Figure 10 illustrates the hybrid runtime execution behaviour of the 

framework. Note that a hybrid design is chosen as some operations perform much 

better or are convenient to do on a CPU than an FPGA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Ordinary Execution with any CPU/GPU implementation. 
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Multiple executions of SampleRNN must be conducted to retrieve and tabulate 

the inputs and outputs of these commands to later compare with the hardware designed. 

The description of the commands along with their input and output results will form 

the basis to the following hardware design. 

As mentioned earlier, there are four methods which can be used to implement 

hardware design on the FPGA. In this research, due to longer design-time required 

along with extremely high complexity, the VHDL approach will not be considered. 

Instead, the implementation uses High Level Synthesis (HLS) tools enabling hardware 

generation from C-like code. Between the three, the approach of using C Synthesis 

allows complex operations to be performed using broad available libraries, and 

inclusion of powerful compiler directives. Therefore, it is utilized here. 

Ultimately, the IP is brought into Vivado 2018.2, a powerful software by Xilinx 

for FPGA designing and testing purposes. It begins with the block design, where other 

required elements (such as processors and interfaces) are connected to the IP designed 

above. Once the design is verified, synthesis and implementation phases are executed 

to finally generate a bitstream. This contains the binarized design information. Along 

with this, the physical block design must also be exported (as a .tcl file). Both these 

files will be needed to configure the overlay. Since the concept of an overlay is native, 

an application can include the hardware accelerator in between other lines of code with 

Figure 10 - The proposed framework. A hybrid model as both CPU and FPGA are used. Note 
that even after the execution of the above commands, more commands can be executed which 

may or may not use an overlay. 
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a few commands. Note that if multiple commands are to be accelerated, multiple 

overlays commands must be called for downloading bitstreams onto the FPGA or a 

single overlay can include multiple accelerators, which is subject to resources 

available. 

3.1.4 Verification and Evaluation  

Testing begins from the very early stages, where to select an application, 

multiple models are tested. Majority of testing will, however, be conducted during the 

design phases. The C synthesis program is debugged by exporting the programs as an 

RTL (Register-Transfer Level) within Vivado HLS to Vivado 2018.2. Once the 

bitstream is generated, the hardware can be provided inputs and the outputs can be 

compared using the mean-square error. Testing will ensure that the correct 

functionality has been accomplished within the hardware designed. The final stage of 

testing will be when the overlay is called within the SampleRNN program. 

Evaluation includes obtaining performance metrics. This will answer whether 

the speed of the program has been accelerated, for which the original program must be 

timed while generating one second of audio. After embedding the accelerator into 

program, the timing performances must be recalculated. To do so in a Python program, 

the ‘time’ library can be used. Time checkpoints will be made before and after 

generating sound to obtain the execution time. A ratio representing the speed up factor 

can be calculated from this. Moreover, the same process can also be replicated on a 

high-end PC with/and without a GPU to illustrate the effectiveness of the new model. 

Speedup factor will be measured using statistical analysis over multiple executions. 

The accuracy of the sound produced by the accelerated system will also be 

considered. This is particularly important in cases where hardware accelerators use 

different data representations than the original application. For this, the aim is to ensure 

that the overall differences cannot be perceived by the human auditory system (Nave, 

2018). Ideally, it is expected that there are no differences in the sound samples when 

these are represented with as little as 16-bits. Accuracy issues are determined by FPGA 

not having predefined datatypes, unlike in Python, where the number of bytes can be 

increased to fit any number possible. In addition to accuracy, the speed performance 

of the accelerator is also affected by the datatype chosen. Since a fixed-point datatype 

will be utilized to provide high performances when compared to floating-point 
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numbers, the results of mathematical calculations will definitely be degraded. On the 

other hand, the Mean Opinion Score (MOS) (ITU, 2016) can also be included as a 

measure to identify the depth with which quality is lost in perceived audio when using 

other datatypes. 

3.2 Summary 
The methodology to accelerate an RNN based sound synthesizer using an FPGA 

starts by first selecting a co-existing model. Followed by this, the program must be 

profiled to identify which operations within the network cause a significant delay. An 

in-depth analysis must be then conducted on these operations, eventually modelling 

prototype designs. These designs undergo multiple testing and refining. The end 

product of this will be a bitstream, which, upon uploading onto the FPGA, can be 

substituted in the model, where performances such as speed and accuracy are 

evaluated. 
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 FRAMEWORK 
This chapter details the proposed framework to develop ad-hoc accelerators for 

deep learning applications. At first, the development details and features of the 

framework are described. This is then followed by an example utilizing the framework 

to accelerate a simple application developed using the PyTorch library, showcasing 

the usability and performances of the framework.  

4.1 Development 
An illustration of the proposed framework is detailed in Figure 11. The 

framework consists of four layers, for which brief descriptions are provided below and 

further details, where needed, are outlined in the subsections to follow. 

 

 

Starting from the first layer, which indeed is the core of this system, is the Xilinx 

PYNQ-Z1 board (PYNQ, 2018). As mentioned in the previous chapter, the board 

consists of the ZYNQ-7000 SoC which houses a Dual-Core ARM Cortex-A9 

processor alongside an FPGA, providing a combination of software and hardware 

programmability. 

The second layer comprises of two software modules being combined for the 

first time ever. First of which is the PYNQ OS, which is a Debian-like Linux platform 

developed by Xilinx. It comes with many software packages which eases the 

development of applications which aim to use both, software and hardware together, 

unifying the two halves of the ZYNQ SoC. The second module within this layer is the 

NN development library for Python, PyTorch (2018), which was ported onto the 

PYNQ OS.  

The first two layers will be packaged and provided as an image file to 

developers/the community. Whereas, layers three and four describe techniques to 

Figure 11 - Framework Structure. 
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apply on top of the first two layers to accelerate an arbitrary NN application. In 

particular, the third layer consists of the specifics on how to exploit the available 

software packages from layer two to create a hybrid platform combining a PyTorch-

developed NN application with a custom designed hardware accelerator.  

Layer four contains the techniques to design the hardware accelerator used in 

layer three. This includes information on using the hardware development toolkits 

provided by Xilinx, namely, Vivado 2018.2 and Vivado HLS, described in the 

previous chapter. Although other methods to design hardware were proposed as well, 

using Vivado HLS to develop C synthesis programs was deemed the most appropriate 

within the context of this framework.  

4.1.1 Environment Setup 

To be able to use the PYNQ-Z1 board, the PYNQ OS v2.3 image (PYNQ, 2018) 

is flashed onto a MicroSD card and placed into the slot on-board.  Proceeding forward, 

simply using a web browser to access http://pynq:9090, while being connected to the 

same network, will open the standard Jupyter notebook interface. Here, new python 

scripts can be developed and tested quickly. Once the access to the board is established 

through an SSH client, the steps devised to port PyTorch, together with a test and its 

result to verify whether this was successful can be found in Appendix C.  

4.1.2 Accelerator Design 

Assuming that the critical kernels within the program are known before 

proceeding into the design of hardware, some details with respect to the inputs, 

outputs, and processing are still ambiguous. Hence, the following are aspects that need 

to be studied (for each critical kernel): 

1. Inputs: 

a. Knowing the source of the inputs will later provide guidance on where 

the hardware should be invoked from. This includes performing any 

pre-processing codes required. More information on this in the next 

subsection. 

b. The source will also help in determining the data structure, for example, 

if the input is a scalar or an array. If the data is an array, an extension 

to this would be to know what the dimensions are. This must be 

consistent with how the hardware will be designed.  
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c. Additionally, the input datatype can also be procured, either by 

understanding the how the input was generated by the program or by 

monitoring the values. For example, if the data is coming from the 

output of a function which produces values which have a range from 

negative one to positive one, the hardware can be optimized for this. 

2. Processing: 

a. The information on what needs to be done can easily be obtained 

through the documentation, as descriptions of what a particular 

function is meant to perform are usually mentioned. The goal of the 

accelerator designed will be to match this description. Knowing what 

the processing is can also decide what datatype must the output of the 

function be. 

3. Outputs: 

a. Once the accelerator has completed the computations, it must be placed 

appropriately so that the application can continue as it would normally. 

Furthermore, the location of the post-processing of data must also be 

conducted right before this location. 

Once all information about a critical kernel has been obtained, developing a 

function in software, which mimics its functionality with low-level python commands, 

will further increase the knowledge about the kernel and allow an easier process of 

porting it into hardware. It further verifies whether or not the technical information is 

correct. 

Moving on, the hardware can now finally be designed. This process can be 

broken-down into two segments: first is where the hardware which mimics the targeted 

kernel is designed, and the second is where that hardware, exported as an IP, will be 

placed along with other hardware blocks which will help in the communication 

between the CPU and FPGA.  

For the first segment, as mentioned earlier, Vivado HLS was chosen as the 

platform to develop the hardware. This was due to System Generator not having the 

capability to communicate large sums of data in and out of the design, which is 

typically seen here. Using Vivado HLS involves writing C synthesis code which is 

translated into hardware. There are many techniques that are available to improve the 



 

34 

 

 

performance of the program which are detailed below, however, before doing so, the 

first step here would be to port the python function written earlier to mimic the kernel 

into a C synthesis program inside the Vivado HLS tool.  

When using the tool, a new project must be created. Here, a Top Function name 

must be provided along with a C synthesis file which will contain that function. When 

invoking this hardware later, this function will be the one to be executed. A tip here 

would be to avoid using the name ‘main’ for the function, as it confuses the synthesizer 

into thinking that it is the main often seen in a C++ program. The drawback of this is 

that the main, when provided inputs, must be in the argument count and argument 

vector format, which is not possible here. Moving on, for the Solution Configuration, 

the Part Selection will have to be changed into XC7Z020CLG400-1, which selects the 

FPGA chip available on the PYNQ-Z1 board. 

The inputs and outputs of the hardware accelerator must be the input of the Top 

Function. Two of the ways data can be exchanged from the accelerator involve using 

either the AXI4-Stream or the AXI4-Lite interfaces. The latter is used when a single 

transaction is needed at a time. This includes passing the address of the element each 

time the data is exchanged. The former, on the other hand, does not have the concept 

of an address other than the base (Xilinx, 2011) and uses the DMA. Here, large arrays 

of 32- or 64-bit data can be exchanged at far better bandwidths than the AXI4-Lite 

since there is no need to continuously provide addresses and transactions are one-shot. 

The transaction must be either of 32- or 64-bit elements is because of the settings on 

Vivado, shown later, which allows only the stated widths going on the bus through the 

DMA. Although, when using small sums of data, the AXI4-Lite will provide better 

results as there will be no need to include the DMA overheads.  

In terms of programming, when using the AXI4-Lite, Vivado HLS provides 

information of the predefined locations where the accelerator will be reading data 

from. Therefore, the Python program will have to simply write/read those addresses. 

When streaming data, on the other hand, since the DMA is directly connected to the 

accelerator, the program will simply pass contiguous arrays. In reality, the contiguous 

arrays are already on the DDR and so the DMA actually passes the base address and 

the number of bytes only to the accelerator. Whichever technique is used, to be able to 

exchange data from a Python program, an AXI interface must be deployed. 
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When it comes to designing hardware, resources and performance are often 

parameters discussed. To enhance these parameters, designers take advantage of the 

capability of hardware to have selective fixed-point datatypes at signal-level. In 

Vivado HLS, on the other hand, the concept is extended to variable-level. This implies 

that individual variables can have unique fixed-point datatypes using libraries 

provided by Xilinx. As mentioned earlier, for datatype optimizations, knowing the 

dynamic range of the data is vital. Vivado HLS provides developers the option of using 

either floating-point or fixed-point datatypes within the design. The former indeed 

provides high accuracy results with full-precision computations and eliminates 

spending valuable development time in investigating the dynamicity of data. However, 

the latter comes with a wide range of advantages, these include, reducing the amount 

of logic resources used, reducing the power consumed, and increasing the execution 

speed of the hardware (reducing latency) (Finnerty and Ratigner, 2017). By default, 

Vivado HLS uses floating-point. But, with the inclusion of specific libraries 

demonstrated in the example later, fixed-point datatype can be introduced within the 

design, with any configuration, which implies that the developer is given the capability 

to choose how many bits to allocate for the integer and fractional parts respectively. 

It may seem that the C synthesis program, which natively is sequential 

programming, will provide hardware being executed sequentially as well. This, 

however, is not the case within Vivado HLS, where the synthesizer is capable to 

identify segments which can be executed in parallel and so applies the optimizations. 

Different pragmas can be used to activate optimizations within the hardware. These 

can be found, with examples on how to use them, in the Xilinx (2019) documentation.  

4.1.3 Generating Bitstream 

Now when the C synthesis program has been developed and the optimizations 

have been applied, the design must be synthesized and exported to Vivado 2018.2 as 

an Intellectual Property (IP). To do so, the icons shown in Figure 12 are clicked. 

 

 

Figure 12 - Steps to export the designed hardware from Vivado HLS to Vivado 2018.2 as an IP. 
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Upon clicking on the Export RTL icon, a pop-up window will provide some 

configuration options. The Format is set as IP Catalog whereas, the language is VHDL 

instead of Verilog. All boxes should be left unchecked. 

Next, a new project is created on Vivado 2018.2. Before doing so, the PYNQ-

Z1 board files are added to the Vivado folder. While creating the project, the PYNQ-

Z1 board should now be visible. Next, the repository where the IP was generated 

should be added to the project so that it is available to be utilized. 

Moving on, a new block design must be created. The first component to add is 

the ZYNQ7 Processing System, along with this, the block automation can also be 

executed. The next block to be added is the accelerator exported from Vivado HLS. 

Simply searching the Top Function name chosen before will show the IP, if not, the 

repository has not been added correctly. Subsequently, the AXI DMA block should 

also be added. Before connection automation is done, configure the DMA block, by 

double-clicking it, to configure it:  

• Uncheck the Scatter Gather Engine. 

• Increase the width of buffer length register from 14 bits to 26 bits. This is 

changed to allow more data to be transferred in a single transaction (from 214 

= 16KB to 226 = 64MB). 

Now, the input of the accelerator IP should be connected manually to the 

M_AXIS_MM2S port of the DMA. The output of the accelerator should be connected 

to the S_AXIS_S2MM port of the DMA. Thereafter, add the high-performance slave 

on the ZYNQ7 Processing System, again by double-clicking it, and click on the PS-

PL Configuration page. At this point, extend the HP Slave AXI Interface and enable 

the HP0 interface. Run Connection Automation twice. 

Before generating the bitstream, using the Address Editor, the range of Data 

accessed by the ZYNQ processor must be increased from 64K to 4M. This is shown 

in Figure 13 below. 
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Using the Regenerate Layout and Optimizing Route options available in block 

design, the connections and placement of blocks will be as efficient as possible. The 

block design should now look like the one shown in Appendix D. Before the bitstream 

can be generated, from Sources, an HDL wrapper for the block design should be 

created (right-click on the correct block design name). The hardware then must also 

be exported as a .tcl file (File -> Export -> Export Block Design). 

4.1.4 Embedding an Accelerator  

Now that the .bit and .tcl files are generated, these should be placed onto the 

PYNQ-Z1 board into the same folder as the main python program which will be 

executed. Note that these two files (.bit and .tcl) must be the same name. To include 

the accelerator within a python program, the Overlay library will be used. In addition, 

the DMA block in hardware can also be referenced. An example of this is shown in 

the Figure 14 below. 

If multiple overlays are used, an additional download input parameter can be 

specified (shown in Figure 14), True or False, which can control whether the overlay 

bitstream will be downloaded onto the FPGA or not. Next, since the DMA is being 

used to transfer data, physical memory needs to be allocated using another module 

provided in the PYNQ library shown in Figure 15.  

Figure 13 - Increasing the total memory range of the ZYNQ on Vivado 2018.2. 

Figure 14 - Using the Overlay library to introduce the designed hardware within the python 
program. 
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Once the allocation is complete, the accelerator can finally be provided input 

data and the output data can be read once the computation is complete. However, when 

using the accelerator, the data being passed can come from various sources. In some 

cases, the I/O might be of different sizes and so it might be useful to apply some pre-

/post-processing. Usually, the I/O is kept as row vectors. Furthermore, data passed to 

the DMA must a numpy array (NumPy, 2019). 

Some useful functions for handling this include, concatenation (torch.cat()), 

reshaping (torch.reshape()), obtaining data values only (tensorArray.data) functions 

which can be called on tensors. To convert from a tensor to a numpy array or vice 

versa, the tensorArray.to_numpy() and torch.tensor(numpyArray) can be used. More 

details for these can be found in the documentation. 

When the data is converted into a numpy array, it can then be transferred to the 

accelerator using the DMA. To do so, the code shown in Figure 16 should be used. 

When the receiving channel returns from the function call and the program proceeds, 

the result will be found in the out_stream array. 

 

 

 

 

 

4.2 Utilizing the Framework 
As an example, to showcase the usability and performances of the proposed 

framework, this section aims to accelerate the basic RNN layer within PyTorch. The 

program developed instantiates the RNN layer with 128 input features, 128 hidden 

features, and two layers. When an RNN has more than one layer, it can be thought to 

have multiple RNN stacked together. An illustration of this is shown in Figure 17. 

Then, the program generates two random-valued tensors as inputs to the network, one 

of which is the actual input, whereas the other is the initial hidden state (labelled hidden 

states in the figure below). On top of these two inputs, the accelerator will also have 

Figure 15 - Allocating memory. Done for both input and output of the accelerator. 

Figure 16 - Transferring data to the accelerator and waiting for the output 
to be complete. 
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to be provided with the weights and biases of the network. The weights, in particular, 

are the largest arrays within this context. 

 

 

 

 

 

 

 

 

 

For each hidden layer, the following equation must be calculated (taken from the 

PyTorch Documentation (2019)): 

𝒉𝒉𝒕𝒕 = tanh (𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖ℎ + 𝑤𝑤ℎℎℎ(𝑡𝑡−1) + 𝑏𝑏ℎℎ) (2) 

Here, wih and whh are 128x128 matrices. Whereas, xt and h(t-1) are three-

dimensional tensors of size, 1x1x128 and 2x1x128 respectively. The biases, bih and 

bhh, are of size 128x1. 

The final output of the network will be the output of the second hidden layer. 

Note that the input to the second hidden layer will be the output of the first. In addition, 

another output of the RNN layer forward pass function call is a combination of both 

the outputs from the hidden layers. Indeed, the actual output of the network can be 

found within this tensor as well. 

The understanding of the inputs, processing, and outputs was straight-forward in 

this case. Since the only computational kernel within the program is the RNN layer, 

no further profiling was conducted. Advancing forward, the functionality was 

mimicked in software, for which the code can be found in Appendix E. In order to 

verify the results, the mean-square error of the output tensors was taken. This gave an 

error of zero. This is expected as the function uses the same functions in PyTorch as 

the original RNN layer would. 

Figure 17 - The RNN layer in PyTorch. As seen, there are two hidden layers, 128 input and 
hidden features. 
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Moving on, since the inputs to the accelerator were of different sizes, pre-

processing is needed. On top of this, since the accelerator is going to be performing 

matrix multiplication, the process of moving from a three-dimensional matrix to a row 

vector had to be considered carefully. For simplicity sake, if a 4x4 matrix was to be 

converted to a row vector, the transform used is shown in Figure 18, where the values 

represent the positions they hold within the row vector. 

 

 

 

Now that it is known what the inputs are, how are they going to be fed into the 

accelerator, what must be performed on them, and where they must be returned, the 

Vivado HLS design is coded. This program can be found in Appendix F. The generic 

Vivado 2018.2 block design is followed for this accelerator as well (Appendix D). 

Appendix G consists of a program and results which compare the performance 

of the CPU against the accelerator. The program is designed such that the accelerator 

and the CPU are provided the same inputs and so there is no need to keep track of a 

couple of inputs and their respective outputs now (done for quick debugging). The 

speedup factor achieved here is about 21 times faster execution (excluding time taken 

for pre/post processing) while the mean-square error was about 2.5887x10-6. Although 

the error has increased due to the introduction of fixed-point datatype, it is still 

minuscule. 

The utilization of the designed accelerator is shown in Table 1. These results 

indicate that the FPGA chip still has reasonable amount of space for other hardware to 

be place as well. The program loops were not able to be further unrolled as this would 

not fit the FPGA chip. 

Figure 18 - Converting a matrix into a row vector. The value at each position represents what 
position the actual value of the matrix would take in the row vector. 

Table 1 - Utilization statistics from Vivado 2018.2. 
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 ACCELERATING SAMPLERNN 
The following chapter discusses the acceleration of SampleRNN using the 

proposed framework. The results of profiling and the analysis of kernels are described 

here. Then, the kernels are re-implemented in software. Thereon, details on the Vivado 

HLS and Vivado 2018.2 designs are given, as well as the information of the accelerator 

integrated into the program to test the overall performance is provided. 

5.1 Dependencies 
To be able to execute the SampleRNN program, the PYNQ OS is still missing 

some packages after porting PyTorch. This is the LibROSA (2018) python package, 

which handles music and audio analysis. Yet again this package had to be ported onto 

this platform. The step-by-step guide along with a small test made can be found in 

Appendix H. Next, the SampleRNN source code can be cloned from the git repository 

(Kozakowski et al., 2017) and executed. 

When executing the SampleRNN application with the configurations 

recommended, it was noticed to have been using the SWAP when the on-board RAM 

was falling short. This led to an analysis of what dimension size, which refers to the 

number of neurons within each layer, should be set to avoid the application using the 

SWAP. Indeed, using the SWAP will further slowdown the application, leading to an 

unfair comparison with the accelerator. The top Linux command was used in this case 

to monitor statistics referring to the percentage of SWAP used by all processes 

running. As a result of doing so, the dimension found was 256 instead of the default 

1024. However, when designing the accelerators, due the inputs being large and 

therefore not fitting the FPGA chip, the dimension was eventually set to 64. Hence, 

the current performance of the application is shown in Table 2 below. The specification 

of the machine it was executed on are: Quad-core Intel(R) Core™ i7-6500U CPU at 

2.50GHz-2.60GHz (overclocked up to 3.2GHz), 16GB RAM, 4GB NVIDIA GeForce 

GTX 960M, running 64-bit Ubuntu 18.04LTS. Along with this, the table also consists 

of the performance on the PYNQ-Z1 board with the said dimensions. 
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5.2 Profiling 
As mentioned in the methodology chapter, two levels of profiling will be 

conducted. First of which will narrow down the search from program-level to function-

level, whereas the second will provide information from function-level down to line-

level.  

5.2.1 Top-level Profiling 

To conduct the top-level profiling, the program was executed with a sample 

length of 16,000 (one second of audio), dimension of 64 and the rest of the default 

settings. The profiling results can be found in Appendix I. The kernels which occupy 

the most amount of time have also been highlighted in yellow within the results. These 

have to be further investigated at line-level to identify the root of the bottlenecks. Some 

kernels have not been considered since they are processes within Python which carry 

out operations which will be infeasible in hardware. On the other hand, some kernels 

either invoke others or are out of the scope of this research and hence are also not 

considered. 

Within the results, the parameter ncalls represents the number of times a function 

is called. Sometimes there are two numbers mentioned here, the first of which is the 

number of times invoked whereas the second is how many times the invocations were 

non-recursive calls. The tottime suggests the time spent within a certain function 

excluding the sub-functions called. The first percall column is simply a division of the 

ncalls and tottime. cumtime represents the time elapsed from invocation till exit, 

whereas the percall followed by this is the division between cumtime and ncalls. The 

last column, labelled filename, provides file location information on the function 

which is responsible for the respective statistics shown in that row. 

Table 2 - Current performance of SampleRNN with dimension set as 64. 
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5.2.2 In-depth Profiling 

The location of the highlighted functions can be taken from the last column of 

the top-level profiling in Appendix I. The line profiler developed by Kern (2019) was 

additionally installed. The results of line profiling can be found in Appendix J.  

5.3 Identifying Bottlenecks and their Analysis 
From the results of profiling, it can be deduced that there are multiple kernels 

which can be accelerated. Although most of the results seen from both profiling seem 

to have functions calling other functions, where those are also seen in the results, this 

can be misleading. After identifying such cases, it was found that the two kernels that 

could be ported into hardware are, the GRU matrix multiplications and vector 

additions, and weight normalisation calculations. Both are further explained below. 

5.3.1 Gated Recurrent Unit (GRU) 

As mentioned in the Literature Review chapter, GRU refers to mechanisms 

which deal with the gradient problems within an RNN. GRUs can selectively store 

dependencies from different time instances although it does not contain memory cells 

but, instead has variables which store the past hidden states. They are far less 

complicated in design and outperform LSTM cells in certain applications (Chung et 

al., 2014). The following equations have been taken from the PyTorch GRUCell 

Documentation (2019) which describe this kernel: 

𝐫𝐫 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐖𝐖𝐢𝐢𝐫𝐫𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐫𝐫 + 𝐖𝐖𝐡𝐡𝐫𝐫𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐫𝐫) (3) 

𝐳𝐳 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐖𝐖𝐢𝐢𝐳𝐳𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐳𝐳 + 𝐖𝐖𝐡𝐡𝐳𝐳𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐳𝐳) (4) 

𝐧𝐧 = tanh (𝐖𝐖𝐢𝐢𝐧𝐧𝐗𝐗 + 𝐛𝐛𝐢𝐢𝐧𝐧 + 𝐫𝐫 ∗ (𝐖𝐖𝐡𝐡𝐧𝐧𝐇𝐇 + 𝐛𝐛𝐡𝐡𝐧𝐧)) (5) 

𝐡𝐡′ = (1 − 𝐳𝐳) ∗ 𝐧𝐧 + 𝐳𝐳 ∗ 𝐡𝐡 (6) 

The variable r here refers to the reset gate calculation. This decides whether or 

not to store the current hidden state and if any of the already stored states should be 

removed. Variable z decides how much of the current hidden state be passed to the 

next hidden state. Variable n is the memory variable. Finally, variable 𝐡𝐡′ is the new 

hidden state generated based on the previous hidden state input and the new memory 

variable, with variable z deciding to what extent should this be done (Mohammadi et 

al., n.d.). 

The line profiling results which refer to this kernel are the functions GRUCell, 

and linear. To generate a second of audio at 16 kHz, these equations had to be 
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computed 2500 times. For the matrix and vector dimensions mentioned below, this 

meant that, in total, 61 million multiplications and 62 million additions had to be 

performed. For audio at 48 kHz, these values would be three times larger, clearly 

showing the number-crunching involved. As seen in the profiling results for GRUCell, 

the implementation of the above equations is shown, where about 84.6% of the time 

spent in the linear function. This function performs the matrix multiplication (weights 

with the input and the hidden state, respectively) and the vector addition (biases). 

Meanwhile the CPU can very well handle the calculation of the non-linear functions 

(tanh and sigmoid) and variable 𝐡𝐡′.  

Henceforth, the focus of this accelerator will be similar to the RNN layers from 

the previous section. However, in this case, the matrix multiplication will be on 

matrices of size 192x64 (weights) and 64x1 (inputs and hidden state, each). The vector 

addition will be between the output of the matrix multiplication, 192x1, and the bias, 

which, of course, is also 192x1. The function which mimics this behaviour was not 

needed as the RNN layers verified the functionality earlier. 

As for the inputs, these can be fetched from the GRUCell function itself. The 

output can be placed into variables called, gi and gh (shown in the line profiling). 

Doing so will allow the program to continue with execution as it would normally. On 

the downside, there does not seem to be a way to have multiple invocations of this 

function so that multiple hardware blocks can be placed to have parallel execution of 

this kernel. This is due to the fact that this kernel is not explicitly called and nor is 

there a way to continue execution without having the result. 

5.3.2 Weight Normalisation 

Weight normalisation, as the name suggests, normalizes the weights within the 

NN, by decoupling the weight magnitude (g) from the direction (v). The equation 

which describes this behaviour, taken from the PyTorch Documentation (2018b), is 

shown here: 

𝐖𝐖 = 𝐠𝐠
𝐯𝐯
‖𝐯𝐯‖

 (7) 

For three-dimensional tensors, the magnitude/norm is calculated per layer. For 

instance, if the tensor is of size 64x64x1, the magnitude will be the square-root of the 
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sum of the squared 64 elements in each layer. This will result in a 64x1x1 tensor which 

will be multiplied, element-wise, with g, which must also be 64x1x1.  

This computational kernel occupies up to 68% of the execution time as seen in 

the top-level profiling results and proves to be a critical aspect within SampleRNN. 

The functions which represent this kernel are compute_weight, and _norm. The inputs, 

g and v, both can be found within the compute_weight function and the output, w, is 

the return parameter of the function. The sizes of the for the inputs are slightly more 

complicated than seen previously. Input dimensionality can vary significantly, as 

shown in Table 3, which indicates that some dimensions barely occur, and thus these 

are not considered for hardware implementation. In addition, the accelerator for 

dimension 64x256x16 do not fit on the FPGA chip. Therefore, hardware is only 

designed for dimensions, 64x64x1 and 256x64x1, which is compliant with Amdahl’s 

Law by making the common/frequent case faster. All in all, three million square-roots, 

three million divisions, 330 million multiplications, and 165 million additions, on 

average, had to be conducted to generate one second of audio at 16,000Hz. 

The python program which mimics the functionality is shown in Appendix K. 

This implementation is for any arbitrary size.  

5.4 Hardware Design & Integration 
Now that all the information about what needs to be ported into hardware has 

been accumulated, the accelerators are designed in Vivado accordingly. The 

subsections below outline design practices that were followed. And then finally the 

accelerator specifications are mentioned. 

Table 3 - The different dimensions the input v and g can take. 
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5.4.1 Using the AXI Stream 

Since large sums of data will be transmitted, the AXI Stream interface is the 

most efficient way to do so for reasons mentioned previously. To configure, and 

read/write data using this, an example is provided in Figure 19 below: 

As seen in the figure above, the AXI Stream items come into the program as a 

structure of type datatype. This contains a data element, of type float, and a flag which 

indicates whether this item is the last or not. The default structure used also contains 

other signals, however, using the above two can provide all functionality needed. Next, 

in order to inform the compiler that the I/O are a stream, the pragmas seen in lines 10-

12 are used. Once this is complete, the data can now be accessed within the body of 

the function. In the example above, the output is the input incremented by one. 

In addition, the structure, datatype, does not necessarily need to have float but, 

it must either be 32-bit or 64-bit wide standard C/C++ types. Another rule when using 

AXI Stream is that the stream cannot be read/written out of order. Further, writing 

must also be done within a loop which consists of only writing out data, else it is taken 

as an irregular pattern, which is prohibited. 

5.4.2 Fixed-point Datatype 

Currently, the example shown in Figure 19 uses floating-point datatype 

throughout the program, which is considered having FIX_32_23 (IEEE, 2008). 

Knowing the dynamic ranges of the I/O here becomes essential to eliminate any extras 

being used. For instance, if the input has values ranging from -10 to 10, assigning 8 

Figure 19 - AXI Stream example on Vivado HLS. 



 

47 

 

 

bits for the exponent is inefficient. Instead, providing five bits will give the same 

functionality. Although, for such a simple example, performances are not greatly 

improved, in the actual accelerators designed for SampleRNN, employing fixed-point 

datatype makes the hardware up to twice as fast as it opens a gateway to a new set of 

specialised libraries dedicated for fixed-point operations. An example of how fixed-

point datatypes can be used within the previous example is shown in Figure 20 below: 

The ap_axi_sdata.h library is already available within the Vivado HLS 

environment. To use it, a new type must be defined, this must be either ap_fixed<W, 

I> for signed or ap_ufixed<W, I> for unsigned, where W is the total width of the type, 

and I is the is number of bits from the total used for the exponent part. There are no 

limitations as to how many datatypes can be created, and so the design can incorporate 

multiple types and simply cast the signals to convert it.  

5.4.3 Enhancing Computations 

Now that the data is flowing through the AXI Stream, and the datatype has been 

casted to fixed-point, it is time to implement the computational kernel in hardware. To 

further speedup the kernels, the hls_math.h library can be utilized when dealing with 

fixed-point mathematical operations. A full list of available functions can be found in 

the Xilinx UG902 (2018c, p. 902) documentation, under section ‘The HLS Math 

Library’. An example of this is shown in the Figure 21 below. 

Figure 20 - Inclusion of fixed-point datatype in Vivado HLS. Highlighted in blue are the 
changes from the previous snapshot. 
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In particular, the two most useful directives for any type of accelerator is the 

pipeline and unroll directive, which is only used within loops of a program.  

Pipelining is a technique which aims to increase parallelism by beginning 

execution of another instruction before the previously issued one is completed. Figure 

22 illustrates the difference between a loop which has not been pipelined and one 

which has with Initiation Interval (II) equal to one. The II refers to the number of clock 

cycles that must kept between instructions being issued.  

 

 

 

 

 

 

 

 

 

 

Figure 21 - Highlighted in blue are changes made to include the tangent mathematical function. 
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For the example in Figure 22, if the II was set as four, the program would be 

executing sequentially. An example of the II equal to two is shown in the Figure 23 

below. The larger the II value, the more it moves towards sequential execution. 

 

 

 

 

 

 

 

Figure 24 demonstrates how to incorporate the pipeline directive in Vivado HLS. 

When included, a speedup factor of about just over four times was achieved when 

compared to without using the directive within this simple example. 

Figure 23 - Pipeline with II equal to 2. Taken from Xilinx ( 2019b) 

Figure 22 - (A) Illustrates the program at the top of the figure being executed sequential like 
any other C/C++ program loop. (B) The very same program is shown but now with the pipeline 

directive being used with the initiation interval equal to one. (Figure taken from Xilinx 
documentation (2019b). 
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On the other hand, unrolling is another technique where parallelism is taken to 

a greater extent than seen in pipelining. In pipelining, the II cannot be less than one. 

Unrolling is equivalent to pipelining but with the II set to zero, which implies that all 

instructions within a loop will be executed in parallel. The concept can be visualized 

in Figure 25. 

The unrolling factor refers to the number of times the loop will be unrolled. The 

compiler, when provided this directive, copy-pastes the body of the loop a certain 

Figure 24 - Pipelining in Vivado HLS. 

Figure 25 - The difference between executing a program with and without unrolling. Figure 
taken from NECST Lab @ Politecnico di Milano (2018) 



 

51 

 

 

amount of times (factor) and then execute all those instructions in parallel. Therefore, 

unrolling with a large factor can lead to a situation where there is no more space 

available on the FPGA. This is due to the multiple resources needed to execute 

instructions in parallel unlike in pipelining where the resources are shared. 

The unrolling directive can be utilized within Vivado HLS as shown in Figure 

26. The unrolling factor must be a factor of the total number of times the loop will 

execute. Although Vivado HLS will allow numbers which are not factors, there are no 

advantages of doing so, as it means that towards the end of the loop execution, there 

will be empty slots which provide no difference to performances. If the unroll factor 

is not provided, the synthesizer unrolls the loop completely. 

In some scenarios, however, these directives may fail to be applied by the 

synthesizer. This usually occurs for a couple of reasons. First of which could be due 

to dependencies, either among instructions within the body of the loop or loop-carried. 

Or there might be a scheduling problem, which may occur due to resources being 

utilized by another command (seen in pipelining). In some cases, common to unrolling, 

the FPGA chip may not have any more resources on-board and thus will fail in creating 

the bitstream in the next stage. Unrolling the inner most loops is always done. 

Figure 26 - Unrolling in Vivado HLS. 
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Wherever possible, unrolling was preferred over pipelining as performances are much 

better. 

5.4.4 Accelerator Specifications 

There are in total four accelerators which were developed. First of which is the 

GRUCell, the program code can be found in Appendix L. Second is the weight 

normalisation for v of size 64x64x1, code shown in Appendix M. The third accelerator 

is once again, weight normalisation but with v of size 256x64x1, code shown in 

Appendix N. Finally, an accelerator which handles a combination of both the stated 

weight normalisation dimensions, the program for which is still the same as the 

previous ones but with slight modifications to the unrolling factors to allow the designs 

to fit together.  

As for the accelerator which consists of the combination of two dimensions for 

weight normalisation, priority was given to the larger dimension to use more space as 

the CPU struggles to perform matrix multiplication for larger sizes than smaller ones. 

In addition, the Vivado 2018.2 design for this accelerator varies slightly as there exists 

two DMAs. This has been shown in Appendix O. Each DMA is assigned an equal 

share of the total 4GB from the Address Editor, used previously. As for the Vivado 

2018.2 designs for the other accelerators, no changes were made from the generic 

design discussed earlier (Appendix D). 

When it comes to embedding the accelerators within SampleRNN, the exact 

same concept was used as shown in the RNN layer example. No accelerator was used 

together as the time to download a new bitstream on the FPGA chip takes exactly 

400ms according to the work done by Hao and Quigley (2017). 
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 RESULTS & ANALYSIS 
Within this chapter, the performance of the accelerators embedded within 

SampleRNN are presented and analysed.  

At first, line profiling was conducted for each individual accelerator, results for 

which have been tabulated. Since various versions of the accelerator were investigated 

on, the tables showcase these in order of development but the fastest among the lot 

being further analysed. The metrics shown are defined as follows: The CPU Time 

Taken refers to the amount of time taken by the CPU to compute the exact processing 

as what the accelerator was designed to do. The Pre-process Time is the amount of 

time spent in making the data appropriate to be passed onto the DMA. DMA Time 

accounts for the transferring and waiting times while using the DMA API. The Post-

processing Time refers to time spent within commands to bring back data into a form 

which can be used by the program again. Total Time is the addition of the pre-

processing, DMA, and post-processing times. Total Block Time HW refers to the total 

time spent in the kernel after adding the hardware whereas, Total Block Time SW is 

GRUCell function when using only the CPU. Block Speedup is kernel on CPU divided 

by kernel on hardware execution times. Function Speedup is the ratio between CPU 

Time taken and DMA Time. Next, the Accelerator Time for calculation column 

specifies the amount of time estimated by Vivado HLS simulation, which only for the 

processing of a single call of the accelerator (without stream I/O). Note that during 

execution, there are multiple calls to the accelerator. The Total Accelerator Time is 

another simulation result by Vivado HLS but for the complete design. The last two 

columns are ratios between the CPU Time Taken and the values simulated by Vivado 

HLS for the processing only and the complete program, respectively. Since the values 

in Vivado HLS are for a single execution, the CPU Time Taken was divided by the 

number of times the function was called. 

Table 4 contains the results for GRUCell. Two major versions of this accelerator 

were developed. As seen in the table, the speedup attained is 0.45x. This of course 

implies that the kernel has ultimately slowed down. However, the simulation results 

provided by Vivado HLS indicate that the processing was conducted almost 9.6x faster 

than the CPU, with an overall speedup of 2.55x. To identify what has caused the 

hardware to slowdown, a pie chart is shown in Figure 27. It seems that the majority 
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amount of time is spent in pre-processing, which is already twice the time taken by the 

CPU to complete the execution. The mean-square error for this accelerator was 1.8602 

x10-7, providing high accuracy as the fixed-point datatype was set to FIX_32_16. 

 

 

 

 

 

 

 

 

Moving on, the results of the three accelerators for weight normalisation have 

been shown in Table 5. Once again, different design improvements were made for the 

same accelerator, this involved improving unrolling factors and software 

optimizations. The speedup factor for weight normalisation for 64x64x1, 256x64x1, 

and the combination of the two are 0.91x, 0.97x, and 0.94x, respectively. On the other 

hand, the simulation speedup for these were 15.59x, 11.20x, and 5.99x, respectively. 

As for the accuracy of the accelerators, the mean-square error is 0.1974 for all. Once 

again, the accelerator has slowed down the execution speed. The timing breakdown of 

the three accelerators is shown in Figure 28. The breakdown clearly shows that the 

accelerator is being overshadowed by the pre/post-processing once again. 

 

 

Table 4 – Performance metrics for GRUCell accelerators. 

Figure 27 - GRUCell timing breakdown. 
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Moreover, in all accelerators designed, the simulation results do not replicate 

when embedded within the python program. When embedding the accelerators, a new 

bottleneck in the system is observed. This includes the pre/post-processing to format 

the data, as well as the DMA. On average, with respect to the total time spent when 

Table 5 - Performance metrics for Weight Normalization accelerators. 

Figure 28 - Weight Normalization timing breakdown. 
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using the accelerator, the pre-processing accounts for 36.1%, whereas post-processing 

amounts to 28.8%. Further understanding of the DMA API may be important as the 

transfer and wait functions do not matching the simulation results. The transfer simply 

forwards the physical address of the contiguous array created at first in pre-processing, 

yet it consumes a significant amount of execution time. The wait function stops the 

program from proceeding until the data is received from the accelerator. It is unclear 

whether the hardware begins as soon as transfer function is called or when wait has 

started. To further investigate the above issue, Table 6 provides a comparison of the 

simulation results and time spent within the transfer and wait functions. Clearly, when 

utilizing the DMA API, hidden latencies are seen, which must be discovered and 

improved as future works, in order to further enhance the framework. 

 

 

 

 

 

 

 

 

 

 

Table 6 - Comparison of DMA API with simulation results. 
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 CONCLUSIONS 
Sound synthesis is a technique whereby analog or digital circuits are used to 

generate sound. There are many different types of synthesizers, such as the simple 

traditional ones where periodic waveforms are generated at different frequencies, and 

more complicated ones, such as physical modelling, where mathematical models are 

developed to mimic instruments and other acoustic bodies. Research has led to 

efficient algorithms which mainly aim to reduce the number of high-quality 

waveforms produced or completely nullify waveforms due to lack of difference in 

perceived audio. 

NNs are computational structures which contain neurons organized within 

layers. This forms a mesh network with weighted connections, a bias inside each 

neuron along with a non-linear thresholding function. When a NN is trained with audio 

data, it is able to produce related sound in a unique pattern. This has led to NNs being 

utilized as sound synthesizers. However, any NN typically requires heaps of 

calculations to be processed before producing a single output, which poses as a 

challenge within sound synthesis. To produce high-quality sound, at least 16,000 

samples per second are needed, where state-of-the-art models have provided barely 

450 samples per second on a high-end PC. This implies the need for an accelerator to 

speed up the kernel. 

Literature has shown that FPGA based accelerators for NNs have exemplary 

performances. These are reconfigurable hardware which perform any function a 

developer designs it for, providing parallel computational capabilities. Although not a 

common choice among developers due to expert design knowledge required, this work 

presents a framework which uses the Xilinx PYNQ-Z1 board to ease the development 

process. A standard RNN layer was accelerated by 21 times using the framework, 

showing promising results. On the other hand, an RNN based sound synthesizer, 

SampleRNN, is also accelerated. The program was profiled at first, where bottle-necks 

were identified to be two kernels related to GRUs and weight normalisation. These 

were redesigned using hardware on the FPGA, aiming to accelerate the computation. 

The design is one-of-a-kind hybrid model which uses both CPU and FPGA. 

SampleRNN was not accelerated as per the goal set initially which was about 10 times 

however, simulation results did illustrate the performance of the hardware providing 
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speedup factors from 9.96x to 15.59x. As for future works, a far more efficient method 

to transfer data to the hardware must be investigated upon. Since when embedding the 

accelerator, instead of eradicating the bottlenecks, new ones were created in the form 

of pre/post-processing and the DMA API. On average, pre-processing accounts for 

36.1% of accelerator execution time whereas the post-processing occupies 28.8%. 

Furthermore, at times, the PYNQ-Z1 board FPGA fell short on space, which made the 

hardware compensate, hence a larger FPGA size may also be investigated on PYNQ 

boards. Lastly, a kernel not investigated in SampleRNN were the convolutional layers 

within the lower tiers as it was out of the scope of this research but indeed it still 

remains as a bottleneck to be investigated as future works. 
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APPENDIX A REVISED PROJECT PROPOSAL 

1. Candidate Details 
 
Name: Manohar Vohra 

 
Student No: 5265071 

 
Supervisor: Dr. Stefano Fasciani 
 
Title of Project:  
Hardware Accelerator for Recurrent Neural Network-based Sound Synthesis 
 
 
Brief Overview: 
Recently, Google has introduced WaveNet, which uses Neural Networks (NNs) for raw audio signal generation 
[1], [2]. The combination of NNs with sound synthesis implies that machines are trained with millions of audio 
examples allowing them to learn and synthesize sound as speech or music at single sample level. Although 
optimization efforts have been considered through different algorithms and hardware previously (i.e. Graphics 
Processing Units) [3]–[10], none are capable of performing synthesis in real-time.  
 
Using hardware accelerators to speed up a NNs computation is an upward trend in recent years [8]. This project 
aims to design a hardware accelerator to speed up the computation of a recurrent neural network (RNN) used in 
sound synthesis. In particular, this project will introduce a framework profiling the computational load of existing 
RNN applications and replace the critical functions with dedicated hardware synthesized on a Field Programmable 
Gate Array (FPGA). While RNNs are well-known for sequential-based learning [11]–[14], the challenge here would 
be that such a network cannot generate audio at the pace required since the samples are generated one at time. 
Previously, other applications have used FPGAs to accelerate NNs [15]–[17], providing promising results, which 
is aimed to be replicated within this application context.  
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2. Project Description:  
Sound synthesis is a technique to generate raw audio waveforms using computer hardware/and or software [18] 
seen in many applications such as text-to-speech (TTS), video games, films, music, electronic musical 
instruments, etc [19]–[22]. Most of these real-world applications require sound synthesizers to operate under real-
time constraints, which indeed includes being fast. A typical example here is Granular Synthesis, which was only 
adopted once it was real-time [23]. Moreover, for consumer applications it is also important to be cost-effective 
and maintaining reasonable power consumption [24]. 
 
A Neural Network (NN) is an architecture containing layers of neurons, namely input, hidden, and output layers. 
These are interconnected together to form a mesh network, where each connection has a weight associated with 
it. The weights are multiplied with the input to this connection and given to the next neuron. Neurons contain non-
linear activation functions with thresholds which indicate whether or not a certain characteristic has been identified 
from the input [25]–[27]. The threshold (bias) and weights are adjusted during training periods, to be able to give 
the maximum accuracy possible to the output. The aim of training the network is to present a large set of inputs 
along with the desired output, and allow the machine to be able to estimate a model embedded in the training data 
[28], [29].  
 
The problem being addressed within this project remains unchanged from ECTE451, where there exists a lack of 
research investigating how recurrent-neural-network-based sound synthesizers can be implemented for real-time 
applications. Through work already completed thus far, it is only further deduced that such systems are yet to be 
real-time. Within the implementations seen in [2], [4], [30] and others, credible results have been achieved in terms 
of functionality. But, in order to be real-time oriented, these systems need to take into account the speed of 
generating audio, whilst operating within the limited resource constraints. If such systems with these capabilities 
were to be implemented using computers of today, they would require an accelerator on an Application Specific 
Integrated Chip (ASIC) alongside the CPU, which is not feasible. Instead, the accelerator can be designed and 
implemented on an FPGA, which provide flexibility and high computational power [31]. Although FPGA design is 
challenging, the proposed framework integrates an existing deep learning programming environment with FPGA 
deployment tools. This simplifies designing and deploying accelerators for NNs, allowing developers to implement 
and evaluate application-specific accelerators.  
 
The framework will be based on the Xilinx PYNQ-Z1 board [32]. The Systems on Chip (SoC) uniquely provides a 
single platform solution containing both a microcontroller, and an FPGA. Integration between the programmable 
(microcontroller) and reconfigurable (FPGA) components is done through a concept of a software library labelled 
as Overlays. In conjunction with a powerful Python developing environment and Debian-like Operating System, 
the board places itself perfectly for the purpose. The board has been used to accelerate Deep Recurrent Neural 
Networks (DRNN is a NN with multiple hidden layers) in literature [31]. What the authors of this paper have failed 
to take into account is one of the most competitive NN libraries, PyTorch [33]. This thesis will also be the first to 
execute PyTorch-written code on the PYNQ-Z1, which is expected to open a gateway of new applications and 
their enhancements proving the significance of this work. 
 
Below are the objectives and outcomes of this work. Note that the points in italic are to be completed within the 
session, whereas the remaining have already been completed in the previous session.  
 
Objectives of this project:  

1. To interpret an existing RNN-based sound synthesizer by top-level profiling, leading to the 
identification of computationally demanding kernels. (Completed) 

o Illustrate how slow current RNN-based sound synthesizers are. (Completed) 
o This objective is extended to also include the line profiling of those kernels flagged by the 

top-level profiling to be system bottlenecks. The need for such in-depth profiling had been 
discovered through the research work conducted thus far, as doing so will allow further 
understanding as to what should be modelled in hardware later. (Completed) 

2. Compose a computationally efficient architecture for the RNN kernel.  
3. Develop a framework to evaluate and test the RNN-based synthesis acceleration. Notably: 

o Port (compile and execute) an existing deep learning environment on an FPGA-based 
platform. 

o Model the designed architecture on an FPGA. 
o Create a new program flow by integrating the CPU and FPGA computations together. 

 
Outcomes of this project: 

1. Profile an existing RNN based sound synthesis and identify the modules presenting high 
computational cost. (Completed) 

2. Design and implement such modules as an FPGA-based accelerator integrated in a computing 
system. 

3. Assess the performance of the RNN based sound synthesis running with and without accelerator. 
4. Develop a framework which enhances performance of RNN-based algorithms by integrating custom 

accelerators for FPGA in an existing deep learning programming environment. 
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3. Project Plan: 
Within the scope of this project, a hardware accelerator will be designed on an FPGA for sound synthesizers which 
utilize RNNs. The aim here would be to improve the speed and resource usage after performing detailed analysis. 
Since projects may encounter various dead ends, listed below are methods (preference-wise) which are devised 
as contingency plans. Based on the work completed in the previous session, Method 1, which was the most 
preferred method, will be the plan which will be followed. The reasoning behind this selection is due to the 
successful installation of PyTorch on the chosen platform. Again, the work to be completed within this session are 
in italic. 
 

• Method 1 
o PyTorch must be successfully installed. (Completed) 
o Compile a sound synthesizer which uses RNNs, for instance SampleRNN [11]. (Completed) 
o Test the speed, power and accuracy currently achieved on the board. (Completed) 
o Identify what needs to be accelerated. This will be conducted by two layers of profiling. 

(Completed) 
 Top-level: profiling the code using software tools with details only provided at 

function level. (Completed) 
 In-depth: once the demanding functions are identified, they will be profiled at line-

level. (Completed) 
o Analyse whether that operation/s can be designed on an FPGA. Must answer the following: 

 Where are inputs coming from? This will help in identifying on which data will the 
operations be performed on as well as their datatype. 

 What processing is to be conducted? Involves studying what all do the above 
inputs undergo to attain the outputs. 

 Where should the outputs be placed? Once the hardware processes the input 
data, where must this be placed to continue the program flow. 

 Feasibility of the kernel will depend on these three factors above.  
o If feasible, proceed with designing. Else, look for another operation which also consumes 

time, and attempt to accelerate that. 
o Test the new system.  
o Compare if a difference in performance is positive or not. If it is not positive, revert to design 

phase. 
o Create a general framework for designing the accelerator. This will include what operations 

can be accelerated, the workflow involved, and generic designs proposed. 
o Finally, make the findings available to the community. 
o As for the developed hardware/software in this method, the hardware is soft-core, meaning 

inside the FPGA, plus, there will also be a C++ program which will be converted to hardware 
using specialised software tools. Further, code alterations may also be done for the selected 
existing application so as to meet the budget constraints (i.e. if the model is very large to 
design on the FPGA, the size will be reduced). 

• Method 2 (No longer considered) 
o If PyTorch does not successfully compile on the PYNQ-Z1 board, another famous NN library 

will be utilised, known as TensorFlow [34]. PyTorch is simpler to use and easy for 
researchers to work with although TensorFlow is competitive as well and has been compiled 
on the PYNQ-Z1 previously [35], [36]. 

o The same steps will then be followed as before but applications written with TensorFlow will 
be selected. 

 
 
 
 

• Method 3 (No longer considered) 
o Another option is to continue using PyTorch, but instead of running it on the PYNQ, it will be 

executed on another board, preferably the Raspberry Pi 3 B+. 
o Now then, there are a few differences in the architecture of the framework proposed within 

this method. The application will be running on the Pi instead of the PYNQ, however, after 
finding out the bottle-necks within the application, the FPGA will be designed on the PYNQ, 
and utilizing communication through the internet, the inputs/outputs can be shared with the 
Pi. 

o Hence, the execution will be as such, the Pi will run the program. When it reaches the 
segment found to be slow, it will send the inputs required to the PYNQ and the FPGA will be 
processing the inputs. Finally, the outputs will be sent back to the Pi and it will continue to 
execute the code. 

o During analysis of performance, the communication latency will be disregarded. 
o In addition, a new software will be programmed to handle the communication mappings. 

 
The strategy of using FPGAs has been exploited here due to their promising results in previous findings. For 
instance, in [16], the author uses an FPGA to accelerate a Convolutional Neural Network (CNN). The design here 
somewhat resembles the system proposed within this project, though, instead of obtaining data from a memory 
chip, the data in this research is going to fed by the CPU. A gap in this paper would be that it lacks to maximize 
the parallelism within process two and three, as it performs these in a sequential manner. Even though utilization 
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rates were not quite as high, performances were far better than CPU and GPU execution, which proves the 
effectiveness of FPGAs. 
 
In contrast to the previous paper, [15] has accelerated a DNN. As opposed to a CNN, a DNN requires far more 
computation, which might explain the difference in utilization rates. Note that the system architecture presented 
here has no CPU once again. Moreover, the paper proposes a forward propagation of the network in a sequential 
manner, which, again, can affect the speed, and is found to be a gap. It is worth mentioning that the design 
proposed here is compact and simple, although better performances have been achieved. 
 
Another key paper [31] proposes an accelerator on the PYNQ-Z1 board. The paper has provided a methodology 
with components proposed here, attaining up to twice the speed of a GPU. A point to consider here is that the 
model creates the complete network on the FPGA but fails to utilize the CPU on-board (only used for training).  
 
The model proposed for this research project will run as a hybrid, exploiting both the CPU and the FPGA. What 
the above stated papers lack is the execution time as comparison, which will be a key attribute when comparing 
models to understand real-time compatibility. Hence, results will be measured by recording how long it has taken 
to execute the program without the accelerator and then with the accelerator. In order to validate the 
implementation, we compare data processed by the accelerator against the data processed by the CPU. As the 
accelerator is implemented in fixed point architecture, we need to ensure that there is sufficient accuracy in the 
generated result.  As an additional result, comparisons with GPU and CPU execution will also be considered. 
 
On the other hand, it is noteworthy to say that the proposed framework will not be speeding up the training period. 
Training periods are usually time-consuming however, this can be done before deployment of the application and 
so will not have an effect on the run-time performance (although accuracy depends on how well trained the net is). 
 
Thus far, the status of the project is as follows: 

 Initially, the Regression example program provided on the GitHub page of PyTorch [37] was studied 
and accelerated. This was done in order to further consolidate the methodology which will be used 
when accelerating the chosen synthesizer application. In the process of doing so, it was discovered 
that the top-level profiling was not enough to understand the bottlenecks of the system. In addition, the 
approach to design the hardware will include using Vivado HLS [38] for writing C++ programs, which is 
then synthesized. This is then exported to as IP and connected within a model on Vivado 2018.2 [39]. 
This application was accelerated such that on average, the training period will execute 2.35x faster. 
This design here calculated the following equations, which is the gradients followed by matrix 
multiplications (not shown here): 

 

𝒈𝒈𝒈𝒈𝒈𝒈𝒅𝒅𝒊𝒊𝒈𝒈𝒈𝒈𝒕𝒕 =

⎩
⎨

⎧
𝟏𝟏
𝒈𝒈

(𝒙𝒙 − 𝒚𝒚), |𝒙𝒙 − 𝒚𝒚| < 𝟏𝟏
𝟏𝟏
𝒈𝒈

(
𝒙𝒙 − 𝒚𝒚

|𝒙𝒙 − 𝒚𝒚|), 𝒐𝒐𝒕𝒕𝒉𝒉𝒈𝒈𝒈𝒈𝒐𝒐𝒊𝒊𝒐𝒐𝒈𝒈
 (1) 

 
 Through the above experiment, methods to transfer larger data efficiently was also discovered. The 

two methods are either using the, AXI4Lite interface [40] or using AXI-Stream interface [40]. Using the 
AXI-Stream utilizes the Direct Memory Access (DMA) IP and is the best approach when large amount 
of data is to be transferred. 

 Next, since the previous application was accelerating the training period, another application was 
programmed such that the accelerator will closely resemble what the synthesizer accelerator will 
include. This was a simple program developed which included a two-layer RNN. The network did not 
have any specific functionality but instead, the aim was to imagine that once an RNN was trained, can 
an accelerator be designed to compute the output when provided with a random input. Hence, rather 
than the functionality of the network being something specific, the focus was on the operations 
involved. This included the follow equation taken from the PyTorch documentation [41]: 

 

𝒉𝒉𝒕𝒕 = 𝐭𝐭𝐭𝐭𝐧𝐧𝐡𝐡�𝒐𝒐𝒊𝒊𝒉𝒉𝒙𝒙𝒕𝒕 + 𝒃𝒃𝒊𝒊𝒉𝒉 +𝒐𝒐𝒉𝒉𝒉𝒉𝒉𝒉(𝒕𝒕−𝟏𝟏) + 𝒃𝒃𝒉𝒉𝒉𝒉� (2) 

 
The application with the accelerator had a speedup factor of almost 13x. The dimension, which is the 
size of the inputs, was 128. The smaller this is, the greater the acceleration attained. Another outcome 
of this experiment was that the overhead of transferring large sums of data is positively correlated to 
the time taken to transfer. This indeed becomes challenge which must be faced later in the project. In 
addition, if a larger FPGA chip was to be used, a significantly higher speedup factor could have been 
achieved as more parallel units could have been deployed although this is a budget constraint to the 
project. 

 A side test to the above was conducted regarding the speed at which hardware performs the 
hyperbolic tangent calculation. Results indicated it was 20% slower than the CPU. 

 As for the chosen application, SampleRNN, models have been training in the background on a server. 
Many variations, such as a new instrument, the guitar, has been put to train as well. Another important 
variation is the reduction of the dimension size mentioned in the previous experimental application as 
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4. Adaption of Supervisor and Examiners feedback in the ECTE451 report:  
The comments provided in the previous session were mainly positive. Further details on some of the parameters 
of the Neural Network, such as the training loss, and their specific definitions within the context of this application 
will be provided in the final report this session. Lastly, the particulars on the architecture of SampleRNN will also 
be polished upon, as more attention will be paid within this session on the functionality while performing analysis. 
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APPENDIX B LOGBOOK SUMMARY SHEET 
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APPENDIX C STEPS TO PORT & TEST PYTORCH 

1. Login as super user: sudo su 
2. Update already installed packages: apt-get update && apt-get upgrade 
3. Restart: shutdown -r now 
4. Login as super user: sudo su 
5. Go to root directory: cd / 
6. Create a SWAP file of size 10 gigabytes: dd if=/dev/zero of=swapfile bs=1M count=10000 
7. Make it compatible: mkswap swapfile 
8. Start using the SWAP file created: swapon swapfile 
9. Add new SWAP file to configuration file: nano /etc/fstab 

a. Keep a note of the location of the default SWAP file of size 1GB. We will need this 
later. (/var/swap/) 

b. Remove all other lines and add this: /swapfile none swap sw 0 0 
10. Remove default SWAP file which comes with the OS: rm -R /var/swap (OR WHATEVER 

LOCATION WAS IN STEP 9) 
11. Check if swap is active: swapon -s 
12. Restart: shutdown -r now 
13. Login as super user: sudo su 
14. Provide permissions to use new SWAP file: chmod 600 /swapfile 
15. Install PyTorch dependencies: apt-get install libopenblas-dev cython3 libatlas-base-dev 

m4 libblas-dev cmake cython python3-dev python3-yaml 
16. Install other useful packages: pip3 install --user pyyaml numpy typing tmux 
17. Restart: shutdown -r now 
18. Login as super user: sudo su 
19. Clone the PyTorch repository from GitHub: git clone --recursive 

https://github.com/pytorch/pytorch 
20. Open the directory: cd pytorch 
21. Obtain v0.4.1 of PyTorch: git checkout tags/v0.4.1 -b build 
22. Update modules: git submodule update --init --recursive 
23. Enter tmux (allows leaving the terminal but still running process): tmux 
24. Set flag: export NO_CUDA=1 
25. Set flag: export NO_DISTRIBUTED=1 
26. Set flag: export MAX_JOBS=1 
27. Build dependencies: python3 setup.py build_deps 
28. Install PyTorch: python3 setup.py develop 

Program to test: 
import torch # Usually error here if not ported correctly 
x = torch.randn(5,5) # Create a 5x5 random-valued tensor 
y = torch.randn(5,5) # Create another 5x5 random-valued tensor 
z = x + y # Perform the element-wise addition 
print(z) # Output Result. Should be a 5x5 tensor (unique) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/pytorch/pytorch
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APPENDIX D GENERIC VIVADO BLOCK DESIGN 
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APPENDIX E SOFTWARE RE-IMPLMENTATION OF RNN LAYER 

def softwareRNNLayer(rnn):  
    # Pre processing 
    counter = 0; 
    for weight in rnn.parameters(): 
        if (counter == 0): 
            weight_ih_0 = weight.data 
            counter = counter + 1 
        elif (counter == 1): 
            weight_hh_0 = weight.data 
            counter = counter + 1 
        elif (counter == 2): 
            bias_ih_0 = weight.data 
            counter = counter + 1 
        elif (counter == 3): 
            bias_hh_0 = weight.data 
            counter = counter + 1   
        elif (counter == 4): 
            weight_ih_1 = weight.data 
            counter = counter + 1 
        elif (counter == 5): 
            weight_hh_1 = weight.data 
            counter = counter + 1 
        elif (counter == 6): 
            bias_ih_1 = weight.data 
            counter = counter + 1   
        elif (counter == 7): 
            bias_hh_1 = weight.data 
            counter = counter + 1 
    # Calculating Hidden Layer 1 output 
    output = torch.tanh(torch.mm(weight_ih_0, input[0].t()).t() + bias_ih_0 +  
torch.mm(weight_hh_0, h0[0].t()).t() + bias_hh_0) # Equation from the Documentation 
    output = output.reshape(1,1,dim) # Post Processing for hidden layer 1 
    # Calculating Hidden Layer 2 output 
    output_1 = torch.tanh(torch.mm(weight_ih_1, output[0].t()).t() + bias_ih_1 +  
torch.mm(weight_hh_1, h0[1].t()).t() + bias_hh_1) 
    output_1 = output_1.reshape(1,1,dim) 
     
    # Putting the above two results together 
    hn = torch.cat((output, output_1), 0).reshape(2,1,128) 
 
    print(output_1) 
    return output_1, hn 
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APPENDIX F VIVADO HLS CODE FOR RNN LAYER 

#include <ap_axi_sdata.h> // Used for inclusion of fixed-point datatype. 
#include "hls_math.h" // Allows performing tanh in hardware. 
 
/* The following are constants used to pull data out of the stream 
 * If the program needs to be adapted for another dimension, only these 
 * values must be altered. 
 */ 
#define SIZE 128 
#define OFST1 2*SIZE 
#define OFST2 SIZE*SIZE 
#define OFST3 3*SIZE 
#define OFST4 OFST3+OFST2 
#define OFST5 OFST4+OFST2 
#define OFST6 OFST5+SIZE 
#define OFST7 OFST6+SIZE 
#define OFST8 OFST7+OFST2 
#define OFST9 OFST8+OFST2 
#define OFST10 OFST9+SIZE 
#define TOT_OUTPUT OFST1 
#define TOT_INPUT OFST10+SIZE 
 
// Structure to hold stream items. 
struct datatype { 
  float data; 
  bool last; 
}; 
 
// Two fixed-point datatypes defined after analysing the nature of data being used. 
typedef ap_fixed<21,5> stream_fixed_type; 
typedef ap_fixed<18,2> fixed2; 
 
// Top Function: 
void rnn_larger(datatype input[TOT_INPUT], datatype output[TOT_OUTPUT]) { 
#pragma HLS INTERFACE ap_ctrl_none port=return // Using no protocol at block-level. 
#pragma HLS INTERFACE axis port=input // Both I/O are AXI Streams. 
#pragma HLS INTERFACE axis port=output 
 
 // Variable Declaration 
 int i, j, counter; 
 stream_fixed_type x[SIZE], h0[2*SIZE]; 
 stream_fixed_type mult_temp[SIZE], mult_temp2[SIZE]; 
 stream_fixed_type w_ih[SIZE*SIZE], w_hh[SIZE*SIZE], b_ih[SIZE], b_hh[SIZE]; 
 fixed2 out1[OFST1] = {}; 
 static bool last[OFST1] = {}; 
 
 /* Array holds the last flag details. The last index is set to HIGH to 
  * notify the CPU that the output values are sent completely. 
  */ 
 last[OFST1-1] = true; 
 
 /* The following for loops are pulling data out off the stream 
  * to begin the calculation of the first hidden layer's output. 
  */ 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  x[i] = input[i].data; 
 } 
 
 for (i = 0; i < OFST1; i++) { 
#pragma HLS PIPELINE 
  h0[i] = input[i+SIZE].data; 
 } 
 
 for (i = 0; i < OFST2; i++) { 
#pragma HLS PIPELINE 
  w_ih[i] = input[i+OFST3].data; 
 } 
 
 for (i = 0; i < OFST2; i++) { 
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#pragma HLS PIPELINE 
  w_hh[i] = input[i+OFST4].data; 
 } 
 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  b_ih[i] = input[i+OFST5].data; 
 } 
 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  b_hh[i] = input[i+OFST6].data; 
 } 
 
 /* This for loop ensures that when the accelerator is called multiple 
  * times by the CPU, the values from the previous run are not accumulated. 
  * Done by simply setting values to 0. 
  */ 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  mult_temp[i] = 0; 
  mult_temp2[i] = 0; 
 } 
 
 // Now that the data is all loaded, the matrix multiplications can be conducted. 
 counter = 0; 
 for (i = 0; i < SIZE; i++) { 
  for (j = 0; j < SIZE; j++) { 
#pragma HLS UNROLL factor=32 // Unrolling this loop 32 times. 
   mult_temp[i] = mult_temp[i] + (w_ih[counter] * x[j]); 
   mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j]); 
   counter++; 
  } 
 } 
 
 /* Once the matrix multiplication is complete, the activation function can be applied. 
  * Note that here the bias is also added. 
  */ 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  out1[i] = tanh((float)(mult_temp[i] + b_ih[i] + mult_temp2[i] + b_hh[i])); 
 } 
 
 /* The following for loops are pulling data out off the stream 
  * to begin the calculation of the second hidden layer's output. 
  */ 
 for (i = 0; i < OFST2; i++) { 
#pragma HLS PIPELINE 
  w_ih[i] = input[i+OFST7].data; 
 } 
 
 for (i = 0; i < OFST2; i++) { 
#pragma HLS PIPELINE 
  w_hh[i] = input[i+OFST8].data; 
 } 
 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  b_ih[i] = input[i+OFST9].data; 
 } 
 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  b_hh[i] = input[i+OFST10].data; 
 } 
 
 /* Once again the array is cleared. Note that this is the same 
  * array as before used to save space rather than declaring 
  * four arrays. 
  */ 
 for (i = 0; i < SIZE; i++) { 
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#pragma HLS PIPELINE 
  mult_temp[i] = 0; 
  mult_temp2[i] = 0; 
 } 
 
 /* Matrix multiplication again. Notice that the input x here is 
  * here is actually the output of the first hidden layer. 
  */ 
 counter = 0; 
 for (i = 0; i < SIZE; i++) { 
  for (j = 0; j < SIZE; j++) { 
#pragma HLS UNROLL factor=32 
   mult_temp[i] = mult_temp[i] + (w_ih[counter] * out1[j]); 
   mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j+SIZE]); 
   counter++; 
  } 
 } 
 
 // Activation function again. 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  out1[i+SIZE] = tanh((float)(mult_temp[i] + b_ih[i] + mult_temp2[i] + b_hh[i])); 
 } 
 
 // Sending the data back to the CPU. 
 for (i = 0; i < OFST1; i++) { 
#pragma HLS PIPELINE 
  output[i].data = out1[i]; 
  output[i].last = last[i]; 
 } 
 
} 
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APPENDIX G RNN LAYER PYTHON PROGRAM 

import torch # PyTorch Library 
import pynq.lib.dma # DMA Module 
from pynq import Xlnk # Physical Memory Allocation Module 
import numpy as np # NumPy Library for Arrays  
from pynq import Overlay # Overlay Module 
import time # Measuring execution time 
 
overlay = Overlay('./rnn_new_test4.bit') # Loading the bitstream onto the FPGA 
dma1 = overlay.axi_dma_0 # Referencing the DMA within the block design 
xlnk = Xlnk() # Creating an instance of the Memory Manager 
dim = 128 # Size of features 
in_stream = xlnk.cma_array(shape=(3*dim+2*(dim*dim+dim*dim+dim+dim),1), dtype=np.float32) # 
Allocating memory for input 
out_stream = xlnk.cma_array(shape=(2*dim,1), dtype=np.float32) # Allocating memory for output 
 
rnn = torch.nn.RNN(dim, dim, 2) # Creating an RNN Layer: Mode = tanh, Input_size = 128, 
Hidden_size = 128, Num_layers = 2 
input  = torch.randn(1, 1, dim) # Generating a random input tensor 
h0 = torch.randn(2, 1, dim) # Generating a random initial hidden state 
 
# The following loop performs a forward pass on CPU 
deltaT = 0 # Variable to accumulate time taken per forward pass 
for i in range(5): # Forward pass done 5 times 
    startTime = time.time() # Used to measure time 
    output, hn = rnn(input, h0) # Forward pass 
    endTime = time.time() 
    deltaT = deltaT + (endTime - startTime) # Accumulate time per pass 
print('SW: ', deltaT/5) # Display average execution time 
 
# Pre-processing: 
 
# Obtain weights and biases 
counter = 0; 
for weight in rnn.parameters(): 
    if (counter == 0): 
        weight_ih_0 = weight.data 
        counter = counter + 1 
    elif (counter == 1): 
        weight_hh_0 = weight.data 
        counter = counter + 1 
    elif (counter == 2): 
        bias_ih_0 = weight.data 
        counter = counter + 1 
    elif (counter == 3): 
        bias_hh_0 = weight.data 
        counter = counter + 1   
    elif (counter == 4): 
        weight_ih_1 = weight.data 
        counter = counter + 1 
    elif (counter == 5): 
        weight_hh_1 = weight.data 
        counter = counter + 1 
    elif (counter == 6): 
        bias_ih_1 = weight.data 
        counter = counter + 1   
    elif (counter == 7): 
        bias_hh_1 = weight.data 
        counter = counter + 1 
 
# Placing data into the Physical Memory 
in_stream[:] = torch.cat((input[0].t(), h0[0].t(), h0[1].t(), 
weight_ih_0.reshape(dim*dim,1),weight_hh_0.reshape(dim*dim,1), bias_ih_0.reshape(dim,1), 
bias_hh_0.reshape(dim,1), 
weight_ih_1.reshape(dim*dim,1),weight_hh_1.reshape(dim*dim,1),bias_ih_1.reshape(dim,1),bias_h
h_1.reshape(dim,1)), 0) 
 
# The following loop performs a forward pass in Hardware 
deltaT_hw = 0 # Accumulation of time taken per forward pass 
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for i in range(5): # Hardware also is run 5 times 
    startTime_hw = time.time() # Used for measuring time 
    dma1.sendchannel.transfer(in_stream) # Provide the DMA the Physical Address of in_stream 
    dma1.recvchannel.transfer(out_stream) # Provide the DMA the Physical Address of out_stream 
    dma1.sendchannel.wait() # Wait for the transfer to complete 
    dma1.recvchannel.wait() 
    endTime_hw = time.time() # Used for measuring time 
    deltaT_hw = deltaT_hw + (endTime_hw - startTime_hw) # Accumulate 
     
# Post-processing: 
hn_output = torch.tensor(out_stream).reshape(2,1,dim) # output of both hidden layers 
output_hw = hn_output[1] # actual output 
 
# Performances: 
print('Mean-square Error = ', torch.mean((output - output_hw).pow(2))) 
print('HW: ', deltaT_hw/5) 
print('Speedup: ', (deltaT/5) / (deltaT_hw/5)) 
 

Results: 
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APPENDIX H STEPS TO PORT & TEST LIBROSA 

All commands were executed as a super user. 

Source: https://github.com/librosa/librosa/issues/757  

1. Download LLVM 6.0.1 source code 
a. http://releases.llvm.org/download.html#6.0.1  
b. Unzip the file: tar -xf llvm-6.0.1.src.tar.gz 

2. Create a directory for the build 
a. mkdir llvm_build 
b. cd llvm_build 

3. Configure the LLVM build 
a. cmake ~/Downloads/llvm-6.0.1.src -DLLVM_TARGETS_TO_BUILD="ARM" -

DCMAKE_BUILD_TYPE="Release" 
4. Begin the build, make sure to use only 1 job as the PYNQ has limited RAM. 

a. cmake –build . -- -j1 
5. Install once build finishes 

a. cmake –build . --target install 
6. Install librosa 0.6.1 

a. pip3 install librosa==0.6.1 
7. Install llvmlite 0.24.0 (This command will automatically uninstall the package which comes 

with librosa 0.6.1, which is what we want) 
a. pip3 install llvmlite==0.24.0 

8. Install the correct Numba version (Otherwise error. This also uninstalls the numba package 
with librosa 0.6.1 which again is needed for the llvmlite version) 

a. pip3 install numba==0.39.0 

Test: 
python3 
import librosa 
# No error should pop up now. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://github.com/librosa/librosa/issues/757
http://releases.llvm.org/download.html#6.0.1
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APPENDIX I TOP-LEVEL PROFILING RESULTS 

ncalls   tottime   percall  cumtime percall filename 

1 0.001 0.001 545.452 545.452 /home/xilinx/samplernn-

pytorch/trainer/plugins.py:157(epoch) 

1 12.676 12.676 545.442 545.442 /home/xilinx/samplernn-pytorch/model.py:249(__call__) 

86250/17250 6.944 0 523.407 0.03 /home/xilinx/pytorch/torch/nn/modules/module.py:471(__

call__) 

16000 8.001 0.001 501.484 0.031 /home/xilinx/samplernn-pytorch/model.py:167(forward) 

50500 1.181 0 344.561 0.007 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:102(

__call__) 

50500 193.402 0.004 326.564 0.006 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:39(co

mpute_weight) 

50500 2.441 0 131.344 0.003 /home/xilinx/pytorch/torch/nn/modules/conv.py:174(forw

ard) 

50500 3.074 0 129.743 0.003 /home/xilinx/pytorch/torch/nn/utils/weight_norm.py:20(_

norm) 

49250 128.374 0.003 128.374 0.003 {built-in method conv1d} 

49250 117.079 0.002 117.079 0.002 {method 'norm' of 'torch._C._TensorBase' objects} 

1250 0.058 0 20.5 0.016 /home/xilinx/samplernn-pytorch/model.py:198(run_rnn) 

1250 0.363 0 20.327 0.016 /home/xilinx/samplernn-pytorch/model.py:99(forward) 

1250 1.77 0 16.816 0 {built-in method builtins.setattr} 

1250 13.948 0 15.046 0 /home/xilinx/pytorch/torch/nn/modules/module.py:530(__

setattr__) 

1250 13.002 0 13.002 0 {method 'view' of 'torch._C._TensorBase' objects} 

50521 0.41 0 9.024 0.007 /home/xilinx/samplernn-pytorch/nn.py:34(forward) 

50500 0.225 0 8.276 0.007 /home/xilinx/pytorch/torch/nn/modules/rnn.py:153(forwar

d) 

1250 0.101 0 6.671 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:318(forw

ard) 

1250 0.063 0 6.47 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:259(forw

ard) 

1250 0.338 0 6.261 0.005 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:94(forwa

rd) 

1250 0.422 0 5.551 0.002 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:131(forw

ard) 

2500 1.439 0.001 4.707 0.002 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:60(GRUC

ell) 

2500 0.384 0 4.295 0 /home/xilinx/pytorch/torch/nn/functional.py:960(log_soft

max) 

5000 0.652 0 3.744 0 /home/xilinx/pytorch/torch/nn/modules/sparse.py:107(for

ward) 

5000 2.697 0 3.673 0 {built-in method builtins.getattr} 

170000 3.534 0 3.534 0 /home/xilinx/pytorch/torch/nn/modules/module.py:514(__

getattr__) 

16000 0.087 0 3.419 0.003 /home/xilinx/pytorch/torch/nn/modules/conv.py:555(forw

ard) 

111000 3.402 0 3.402 0 {method 'multinomial' of 'torch._C._TensorBase' objects} 

285761 3.312 0.003 3.312 0.003 {built-in method conv_transpose1d} 

16000 0.193 0 2.937 0 /home/xilinx/pytorch/torch/nn/functional.py:1036(embedd

ing) 

16000 2.749 0 2.749 0 {method 'permute' of 'torch._C._TensorBase' objects} 
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53000 2.745 0 2.745 0 {built-in method embedding} 

16000 2.374 0 2.374 0 {method 'log_softmax' of 'torch._C._TensorBase' objects} 

16000 0.154 0 2.144 0 /home/xilinx/pytorch/torch/nn/functional.py:1010(linear) 

32000 0.396 0 2.113 0 /home/xilinx/pytorch/torch/nn/functional.py:635(relu) 

16000 1.982 0 1.982 0 {method 'exp_' of 'torch._C._TensorBase' objects} 

32000 1.719 0 1.719 0 {built-in method addmm} 

16000 1.717 0 1.717 0 {built-in method relu} 

16000 1.507 0 1.507 0 {method 'squeeze' of 'torch._C._TensorBase' objects} 

32000 0.389 0 1.475 0 /home/xilinx/pytorch/torch/nn/functional.py:839(_get_soft

max_dim) 

133252 1.145 0 1.145 0 {method 'size' of 'torch._C._TensorBase' objects} 

16000 1.085 0 1.086 0 {built-in method _warnings.warn} 

20752 1.068 0 1.068 0 {method 'unsqueeze' of 'torch._C._TensorBase' objects} 

11250 0.191 0 0.872 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:170(<gene

xpr>) 

188502 0.69 0 0.69 0 {method 'values' of 'collections.OrderedDict' objects} 

5000 0.076 0 0.633 0 /home/xilinx/pytorch/torch/nn/modules/module.py:731(pa

rameters) 

152751 0.598 0 0.598 0 {method 'get' of 'dict' objects} 

11250 0.266 0 0.557 0 /home/xilinx/pytorch/torch/nn/modules/module.py:750(na

med_parameters) 

105757 0.539 0 0.539 0 {built-in method builtins.isinstance} 

5000 0.481 0 0.481 0 {method 'chunk' of 'torch._C._TensorBase' objects} 

11250 0.317 0 0.465 0 /home/xilinx/pytorch/torch/nn/modules/container.py:155(

__iter__) 

83752 0.456 0 0.456 0 {method 'contiguous' of 'torch._C._TensorBase' objects} 

6250 0.441 0 0.441 0 {built-in method sigmoid} 

16002 0.407 0 0.407 0 {built-in method cat} 

95286/92022 0.366 0 0.393 0 {built-in method builtins.len} 

2500 0.018 0 0.352 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:231(all_we

ights) 

1250 0.029 0 0.334 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:233(<listco

mp>) 

1250 0.252 0 0.252 0 {method 't' of 'torch._C._TensorBase' objects} 

5000 0.246 0 0.246 0 {method 'dim' of 'torch._C._TensorBase' objects} 

1250 0.179 0 0.241 0 /home/xilinx/samplernn-

pytorch/utils.py:16(linear_dequantize) 

75250 0.202 0 0.202 0 {built-in method tanh} 

10000 0.107 0 0.181 0 {method 'add' of 'set' objects} 

20000 0.108 0 0.156 0 /home/xilinx/pytorch/torch/tensor.py:384(__hash__) 

2500 0.146 0 0.146 0 {method 'transpose' of 'torch._C._TensorBase' objects} 

1250 0.055 0 0.11 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:120(check

_forward_args) 

16002 0.02 0 0.093 0 /home/xilinx/pytorch/torch/nn/modules/container.py:132(

__getitem__) 

1005 0.092 0 0.092 0 {built-in method builtins.iter} 
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1252 0.071 0 0.071 0 {method 'expand' of 'torch._C._TensorBase' objects} 

1251 0.032 0 0.067 0 /home/xilinx/pytorch/torch/nn/modules/container.py:123(

_get_abs_string_index) 

1005 0.064 0 0.064 0 {method 'float' of 'torch._C._TensorBase' objects} 

1250 0.036 0 0.06 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:231(Auto

gradRNN) 

20000 0.048 0 0.048 0 {built-in method builtins.id} 

10000 0.048 0 0.048 0 {method 'data_ptr' of 'torch._C._TensorBase' objects} 

1250 0.027 0 0.036 0 /home/xilinx/pytorch/torch/nn/modules/container.py:152(

__len__) 

3264 0.024 0 0.033 0 /home/xilinx/pytorch/torch/nn/modules/rnn.py:141(check

_hidden_size) 

7500 0.024 0 0.024 0 {method 'append' of 'list' objects} 

1250 0.02 0 0.023 0 /home/xilinx/pytorch/torch/nn/modules/module.py:795(na

med_children) 

1250 0.017 0 0.022 0 /home/xilinx/pytorch/torch/backends/cudnn/__init__.py:8

2(is_acceptable) 

1250 0.013 0 0.019 0 /home/xilinx/pytorch/torch/nn/backends/backend.py:7(__

getattr__) 

1250 0.018 0 0.018 0 {built-in method torch._C._jit_is_tracing} 

1250 0.013 0 0.017 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:89(Stack

edRNN) 

1250 0.012 0 0.012 0 {method 'detach' of 'torch._C._TensorBase' objects} 

1 0.008 0 0.008 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:316(RNN

) 

1250 0.007 0 0.007 0 /home/xilinx/pytorch/torch/nn/modules/conv.py:436(_out

put_padding) 

1250 0.007 0 0.007 0 {method 'items' of 'collections.OrderedDict' objects} 

2500 0.007 0 0.007 0 /home/xilinx/pytorch/torch/nn/_functions/rnn.py:130(Rec

urrent) 

1250 0 0 0.007 0.007 /usr/local/lib/python3.6/dist-

packages/librosa/output.py:187(write_wav) 

1 0.006 0 0.006 0 {built-in method torch._C._get_cudnn_enabled} 

1250 0.003 0.003 0.004 0.004 /usr/local/lib/python3.6/dist-

packages/librosa/util/utils.py:552(normalize) 

1 0.003 0 0.003 0 {built-in method _operator.index} 

1 0 0 0.002 0.002 /usr/lib/python3/dist-

packages/scipy/io/wavfile.py:284(write) 

1005 0 0 0.001 0 /usr/lib/python3.6/warnings.py:85(_showwarnmsg) 

3 0 0 0.001 0 /usr/lib/python3.6/warnings.py:20(_showwarnmsg_impl) 

3 0 0 0.001 0.001 /usr/lib/python3/dist-

packages/scipy/io/wavfile.py:400(_array_tofile) 

1 0 0 0.001 0.001 /usr/local/lib/python3.6/dist-

packages/librosa/util/utils.py:110(valid_audio) 

5 0.001 0 0.001 0 {method 'write' of '_io.BufferedWriter' objects} 

1 0.001 0 0.001 0 {method 'reduce' of 'numpy.ufunc' objects} 
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APPENDIX J LINE PROFILING RESULTS 

Timer unit: 1e-06 s 
Total time: 5.36674 s 
File: /home/xilinx/pytorch/torch/nn/_functions/rnn.py 
Function: GRUCell at line 75 
 
Hits         Time  Per Hit   % Time  Line Contents 
================================================== 
                                     @profile 
                                     def GRUCell(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None): 
2500    1302883.0    521.2     24.3      gi = F.linear(input, w_ih, b_ih) 
2500    1303676.0    521.5     24.3      gh = F.linear(hidden, w_hh, b_hh) 
                                      
2500     318547.0    127.4      5.9      i_r, i_i, i_n = gi.chunk(3, 1) 
2500     265156.0    106.1      4.9      h_r, h_i, h_n = gh.chunk(3, 1) 
                                      
2500     580300.0    232.1     10.8      resetgate = torch.sigmoid(i_r + h_r) 
2500     426801.0    170.7      8.0      inputgate = torch.sigmoid(i_i + h_i) 
2500     603764.0    241.5     11.3      newgate = torch.tanh(i_n + resetgate * h_n) 
2500     534629.0    213.9     10.0      hy = newgate + inputgate * (hidden - newgate) 
                                      
2500      30982.0     12.4      0.6      return hy 
 
Total time: 2.14771 s 
File: /home/xilinx/pytorch/torch/nn/functional.py 
Function: linear at line 1009 
 
Hits         Time  Per Hit   % Time  Line Contents 
================================================== 
                                     @profile 
                                     def linear(input, weight, bias=None): 
                                         r""" 
                                         Applies a linear transformation to the incoming data: :math:`y = 
xA^T + b`. 
                                      
                                         Shape: 
                                      
                                             - Input: :math:`(N, *, in\_features)` where ̀ *` means any number 
of 
                                               additional dimensions 
                                             - Weight: :math:`(out\_features, in\_features)` 
                                             - Bias: :math:`(out\_features)` 
                                             - Output: :math:`(N, *, out\_features)` 
                                         """ 
5000      73913.0     14.8      3.4      if input.dim() == 2 and bias is not None: 
                                             # fused op is marginally faster 
5000    2073802.0    414.8     96.6          return torch.addmm(bias, input, weight.t()) 
                                      
                                         output = input.matmul(weight.t()) 
                                         if bias is not None: 
                                             output += bias 
                                         return output 
 
Total time: 129.681 s 
File: /home/xilinx/pytorch/torch/nn/utils/weight_norm.py 
Function: _norm at line 54 
 
 Hits         Time  Per Hit   % Time  Line Contents 
=================================================== 
                                      @profile 
                                      def _norm(p, dim): 
                                          """Computes the norm over all dimensions except dim""" 
50514     565315.0     11.2      0.4      if dim is None: 
                                              return p.norm() 
50514     517167.0     10.2      0.4      elif dim == 0: 
50514    1356034.0     26.8      1.0          output_size = (p.size(0),) + (1,) * (p.dim() - 1) 
50514  127242022.0   2518.9     98.1          return p.contiguous().view(p.size(0), -
1).norm(dim=1).view(*output_size) 
                                          elif dim == p.dim() - 1: 
                                              output_size = (1,) * (p.dim() - 1) + (p.size(-1),) 
                                              return p.contiguous().view(-1, p.size(-
1)).norm(dim=0).view(*output_size) 
                                          else: 
                                              return _norm(p.transpose(0, dim), 0).transpose(0, dim) 
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Total time: 335.674 s 
File: /home/xilinx/pytorch/torch/nn/utils/weight_norm.py 
Function: compute_weight at line 73 
 
 Hits         Time  Per Hit   % Time  Line Contents 
=================================================== 
                                          @profile 
                                          def compute_weight(self, module): 
50507    3558188.0     70.4      1.1          g = getattr(module, self.name + '_g') 
50507    2724949.0     54.0      0.8          v = getattr(module, self.name + '_v') 
50507    1604996.0     31.8      0.5          if (v.size()[0] == 64 and v.size()[1] == 64 and v.size()[2] 
== 1): 
16252   25135848.0   1546.6      7.5              return v * (g / _norm(v, self.dim)) 
34255     726835.0     21.2      0.2          elif (v.size()[0] == 256 and v.size()[1] == 64 and v.size()[2] 
== 1): 
16001   65264167.0   4078.8     19.4              return v * (g / _norm(v, self.dim)) 
18254  236658769.0  12964.8     70.5          return v * (g / _norm(v, self.dim)) 
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APPENDIX K SOFTWARE RE-IMPLMENTATION OF WEIGHT 
NORMALISATION 

def softwareWeightNormalisation(v, g): 
    # Pre-processing 
    v_copy = v.reshape(v.size()[0]*v.size()[1]*v.size()[2],1) # Reshape the tensor, v, into a 
row vector 
    g_copy = g.reshape(g.size()[0],1) # Reshape tensor g as well into a  
 
    # Initialise tensors 
    norm = torch.zeros(g_copy.size()) # Create tensor with the same dimension as row vector g, 
with all zeros 
    square_sum = torch.zeros(g_copy.size()) 
    div = torch.zeros(g_copy.size()) 
    output = torch.zeros(v_copy.size()) # Create tensor to hold the output, values initialised 
to zero 
 
    # Nested loop to calculate the norm and the division of g with the norm 
    counter = 0 # Used to obtain value of v in order 
    for i in range(v.size()[0]): 
        for j in range(v.size()[1]*v.size()[2]): 
            square_sum[i] = square_sum[i] +  (v_copy[counter] * v_copy[counter]) # Square v 
and accumulate 
            counter = counter + 1 # Each iteration of inner loop, continue to obtain new values 
of v 
        norm[i] = torch.sqrt(square_sum[i]) # Once sum of squares has been completed, perform 
square-root 
        div[i] = g_copy[i] / norm[i] # Divide 
 
    # Nested loop to calcuate the multiplication of v with (g/norm(v)) 
    counter = 0 
    for i in range(v.size()[0]): 
        for j in range(v.size()[1]): 
            for k in range(v.size()[2]): 
                output[counter] = v_copy[counter] * div[i] 
                counter = counter + 1 
 
    # Post-processing 
    return output.reshape(v.size()) 
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APPENDIX L VIVADO HLS CODE FOR GRUCELL 

#include <ap_axi_sdata.h> // Needed for Fixed-point datatype 
 
// Constants 
#define SIZE 64 
#define W_SIZE 192*SIZE 
#define B_SIZE 3*SIZE 
#define OFST1 2*SIZE 
#define OFST2 OFST1+W_SIZE 
#define OFST3 OFST2+W_SIZE 
#define OFST4 OFST3+B_SIZE 
#define TOT_INPUT OFST4+B_SIZE 
#define TOT_OUTPUT B_SIZE 
 
// Structure for stream items 
struct datatype { 
  float data; 
  bool last; 
}; 
 
typedef ap_fixed<32,16> stream_fixed_type; // Fixed-point datatype of FIX_32_16 
 
void sampleRNN_GRU(datatype input[TOT_INPUT], datatype output[2*TOT_OUTPUT]) { 
#pragma HLS INTERFACE ap_ctrl_none port=return // No block-level protocol 
#pragma HLS INTERFACE axis port=input // Declaring I/O as stream 
#pragma HLS INTERFACE axis port=output 
 
 // Variables 
 int i, j, counter; 
 stream_fixed_type x[SIZE], h0[SIZE], temp1; 
 stream_fixed_type mult_temp[TOT_OUTPUT], out1[2*TOT_OUTPUT] = {}, 
mult_temp2[TOT_OUTPUT]; 
 stream_fixed_type w_ih[W_SIZE], b_ih[B_SIZE], w_hh[W_SIZE],  b_hh[B_SIZE]; 
 bool last[2*TOT_OUTPUT] = {}; 
 last[2*TOT_OUTPUT-1] = true; // Setting the last flag HIGH for the last element 
 
 // The following loops are segregating the data from the stream into their respective 
variables 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  x[i] = input[i].data; 
 } 
 
 for (i = 0; i < SIZE; i++) { 
#pragma HLS PIPELINE 
  h0[i] = input[i+SIZE].data; 
 } 
 
 for (i = 0; i < W_SIZE; i++) { 
#pragma HLS PIPELINE 
  w_ih[i] = input[i+OFST1].data; 
 } 
 
 for (i = 0; i < W_SIZE; i++) { 
#pragma HLS PIPELINE 
  w_hh[i] = input[i+OFST2].data; 
 } 
 
 for (i = 0; i < B_SIZE; i++) { 
#pragma HLS PIPELINE 
  b_ih[i] = input[i+OFST3].data; 
 } 
 
 for (i = 0; i < B_SIZE; i++) { 
#pragma HLS PIPELINE 
  b_hh[i] = input[i+OFST4].data; 
 } 
 
 // Loop performing 2 matrix multiplications and vector additions 
 counter = 0; 
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 for (i = 0; i < TOT_OUTPUT; i++) { 
  mult_temp[i] = 0; // Make sure the values are zero initially 
  mult_temp2[i] = 0; 
  for (j = 0; j < SIZE; j++) { 
#pragma HLS UNROLL factor=16 // Matrix multiplication 
   mult_temp[i] = mult_temp[i] + (w_ih[counter] * x[j]); 
   mult_temp2[i] = mult_temp2[i] + (w_hh[counter] * h0[j]); 
   counter++; 
  } 
  out1[i] = mult_temp[i] + b_ih[i]; // Vector addition 
  out1[i+TOT_OUTPUT] = mult_temp2[i] + b_hh[i]; 
 } 
 
 // Send output to the stream 
 for (i = 0; i < 2*TOT_OUTPUT; i++) { 
#pragma HLS PIPELINE 
  output[i].data = out1[i]; 
  output[i].last = last[i]; 
 } 
 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

86 

 

 

APPENDIX M VIVADO HLS CODE FOR WEIGHT NORMALISATION 
(64X64X1) 

#include <ap_axi_sdata.h> // Needed for Fixed-point datatype. 
#include "hls_math.h" // Needed for the square-root function. 
 
// Constant definitions. Changing these allows the modification of the dimensions. 
#define G_SIZE    64 
#define V_LAYERS   64 
#define V_ROWS    64 
#define V_COL    1 
#define V_SIZE    V_LAYERS*V_ROWS*V_COL 
#define TOT_INPUT   G_SIZE+V_SIZE 
 
// Structure to bring in items from the stream. 
struct datatype { 
  float data; 
  bool last; 
}; 
 
typedef ap_fixed<32,16> fixed2; // Fixed-point datatype FIX_32_16 
 
void compute_weight_2(datatype input[TOT_INPUT], datatype output[V_SIZE]) { 
#pragma HLS INTERFACE ap_ctrl_none port=return // No block-level protocol 
#pragma HLS INTERFACE axis port=input // Declaring the I/O as stream 
#pragma HLS INTERFACE axis port=output 
 
 // Variable Declaration 
 fixed2 norm[G_SIZE] = {}, v_in[V_SIZE], output_temp[V_SIZE]; 
 int i, j, k, counter, counter2; 
 bool last[V_SIZE] = {}; 
 last[V_SIZE-1] = true; // Pre-setting the last variable's last element as HIGH. 
 
 // Bringing in the input v. 
 for (i = 0; i < V_SIZE; i++) { 
#pragma HLS PIPELINE 
  v_in[i] = input[i].data; 
 } 
 
 // Similar design to the software version created. 
 counter = 0; 
 counter2 = 0; 
 for (i = 0; i < G_SIZE; i++) { 
  norm[i] = 0; // Making sure it is zero before accumulating 
  for (j = 0; j < V_ROWS*V_COL; j++) { 
#pragma HLS UNROLL factor=16 
   norm[i] = norm[i] + (v_in[i] * v_in[i]); 
   counter++; 
  } 
  norm[i] = ((fixed2)input[V_SIZE+i].data) / hls::sqrt(norm[i]); // Using fixed-
point square-root 
  for (j = 0; j < V_ROWS*V_COL; j++) { 
/* Since this accelerator is used in two scenarios, when it is alone, keep UNROLL factor at 
32, otherwise 16. 
 * Done since there is lack of space. 
 */ 
#pragma HLS UNROLL factor=32 
   output_temp[counter2] = v_in[counter2] * norm[i]; 
   counter2++; 
  } 
 } 
 
 // Sending the data back out through the stream. 
 for (i = 0; i < V_SIZE; i++) { 
#pragma HLS PIPELINE 
  output[i].data = output_temp[i]; 
  output[i].last = last[i]; 
 } 
 
} 



 

87 

 

 

APPENDIX N VIVADO HLS CODE FOR WEIGHT NORMALISATION 
(256X64X1) 

/* Same as the code for v dimension: 64x64x1 & g dimension: 64x1x1. 
 * But now the Constants are set to v dimension: 256x641 & g dimension: 256x1x1. 
 * The UNROLLING factors have also changed. 
 */ 
 
#include <ap_axi_sdata.h> 
#include "hls_math.h" 
 
#define G_SIZE    256 
#define V_LAYERS   256 
#define V_ROWS    64 
#define V_COL    1 
#define V_SIZE    V_LAYERS*V_ROWS*V_COL 
#define TOT_INPUT   G_SIZE+V_SIZE 
 
struct datatype { 
  float data; 
  bool last; 
}; 
 
typedef ap_fixed<32,16> fixed2; 
 
void compute_weight_64_256_16(datatype input[TOT_INPUT], datatype output[V_SIZE]) { 
#pragma HLS INTERFACE ap_ctrl_none port=return 
#pragma HLS INTERFACE axis port=input 
#pragma HLS INTERFACE axis port=output 
 
 
 fixed2 norm[G_SIZE] = {}, v_in[V_SIZE], output_temp[V_SIZE]; 
 int i, j, k, counter, counter2; 
 bool last[V_SIZE] = {}; 
 last[V_SIZE-1] = true; 
 
 for (i = 0; i < V_SIZE; i++) { 
#pragma HLS PIPELINE 
  v_in[i] = input[i].data; 
 } 
 
 counter = 0; 
 counter2 = 0; 
 for (i = 0; i < G_SIZE; i++) { 
  norm[i] = 0; 
  for (j = 0; j < V_ROWS*V_COL; j++) { 
#pragma HLS UNROLL factor=16 // Same as the other design 
   norm[i] = norm[i] + (v_in[i] * v_in[i]); 
   counter++; 
  } 
  norm[i] = ((fixed2)input[V_SIZE+i].data) / hls::sqrt(norm[i]); 
  for (j = 0; j < V_ROWS*V_COL; j++) { 
#pragma HLS UNROLL factor=64 // Unrolled completely 
   output_temp[counter2] = v_in[counter2] * norm[i]; 
   counter2++; 
  } 
 } 
 
 for (i = 0; i < V_SIZE; i++) { 
#pragma HLS PIPELINE 
  output[i].data = output_temp[i]; 
  output[i].last = last[i]; 
 } 
 
} 
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APPENDIX O VIVADO 2018.2 COMBINATION ACCELERATOR WEIGHT 
NORMALISATION BLOCK DESIGN 
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