
Lab 8: Digital Oscilloscope

UC Davis Physics 118
Rev: March 12, 2024

Introduction

In this lab, you’re going to learn to do three things:

• Combine custom Verilog code with IP in the block design.

• Use the XADC directly.

• Use mapped dual ported memory to communicate with your custom configuration.

You’ll need the control module you designed in the last homework, but if yours didn’t work, you
can download a working version at

Files/FPGA/Lab 8 Files/mem_control.v

You’ll also need the base.xdc file from last time, or you can download it again.

Zynq 
Processor AX

I B
us

GPIO 
Registers

Dual ported 
memory

mem_control.v

ADC

m
em

_add

W
E

STRO
BE

ADC Value

Vaux1

Figure 1: Conceptual view of project.

A conceptual view of the project is shown in Figure 1. The processor will communicate with the
Verilog module using GPIO registers. The Verilog module will control the address and write strobe
for port B of a dual port memory. It will also issue the convert command to the ADC. In triggered
mode, it will monitor the ADC value to determine the trigger memory address and when to begin
counting writes.

The processor will monitor the state of the Verilog module to see when it’s finished, then read out
the data through Port A of the memory.

This is a pretty straightforward, but has a lot of steps. It’s basically just following instructions. If
your Verilog module works, then all you need to do is connect things correctly.

1



Building the Oscilloscope

Initializing the Project

As before, create a new project, selecting the Pynq-z2 board. Select RTL Project and “Do not
specify sources at this time”. I’ll assume it’s called “Lab 8”. Click “Create Block Design”. Call it
“lab 8” or similar.

Instantiate the Zynq processor and do “Run block automation”.

Adding You Verilog Code

Figure 2: Memory control module.

In the “Sources” tab, right-click on “Design Sources” and select “Add sources...”. Select “Add or
create design sources”, click “Next”, and select “Add Files”. Browse to “mem control.v”, select
it, and click “Finish”. It should now appear in “Sources→Design Sources”. Drag it into the block
diagram window, and it should appear as a symbol in your block diagram, with the inputs on the
left and the outputs on the right, as shown in Figure 2. Run “Connection Automation” to connect
the clock.

Setting Up IO Ports

Figure 3: Sample period GPIO register.

We will communicate with our Verilog module via GPIO ports. We could combine some functions
into single ports, but in the interest of readability, we’ll create a separate instance for each port.

2



Figure 4: Configuration to auto-connect GPIO interfaces.

gpio_io_i[1:0]

Figure 5: Processor to mem control interface complete.

Use the IP adder to add instance of “AXI GPIO”. Name it “sample period”. Double-click on it,
select “IP Configuration”, select “All Outputs”, set GPIO Width to 32, and click “OK”. Expand
the GPIO port and verify that it has a single 32 bit output port, as shown in Figure 3.

Now repeat this naming and configuration procedure for all the processor interfaces, setting them
to “All outputs” or “All inputs” as appropriate.

3



• All outputs:

– control: 8 bits.
– threshold: 16 bits.
– num write: 13 bits.

• All inputs:

– state: 2 bits.
– trigger add: 14 bits.

When you’re done, expand all the GPIO ports and carefully verify the size and direction of each
port, as well as all the names.

Click “Run Connection Automation”. Select all, but then unselect all the GPIO interfaces, as
shown in Figure 4. This will prevent the automation from connecting the GPIO interfaces to
external ports. Click “OK”. As before, you’ll see an “AXI Interconnect” and a “Processor System
Reset” IP appear and get connected all the AXI GPIO instances; however, all the GPIO ports
should still be unconnected.

Carefully connect each GPIO port to the associated port on the mem control symbol. If you do
this correctly, the green “Run Connection Automation” options should go away at the top. If it
doesn’t, you connected something wrong! Carefully check your connections again.

Regenerate the layout and it should look something like what’s shown in Figure 5.

Adding XADC Instance

Figure 6: XADC fully connected.

Add the XADC Wizard. Double-click on it and change the defaults as follows:

• Basic tab:

4



– Interfact Options: DRP
– Timing Mode: Event Mode
– Startup Channel Selection: Channel Sequencer

• Alarms tab:

– Deselect all.

• Channel Sequencer tab:

– Deselect all except “vauxp1/vauxn1”

Click “OK”. Use “Run Connection Automation” to connect the clock.

Expand the “s drp” and “Vaux1” interfaces and make the following connections:

• eoc_out on xadc wiz 0 to den_in on the same instance.

• do_out[15:0] on xadc wiz 0 to XADC[15:0] on mem control 0

• strobe on mem control 0 to convst_in on xadc wiz 0.

• As in the last lab, create two input ports Vaux1_v_n and Vaux1_v_p and connect them to
vauxn1 and vauxp1 on xadc wiz 0, respectively.

Import the “base.xdc” file as a constraint and make sure all but those two I/O pins are commented
out.

If you’ll recall from the last lab, we access the XADC via registers. These are selected with the
daddr_in[6:0] input on xadc wiz 0. We will hardcode this to adress 0x11, which is the address
of Vaux1. To do this, add a “constant” IP. Double-click on it and set it to 7 bits and a value of 0x11.

Carefully verify that the XADC has all the connections, and only the connections, shown in Fig-
ure 6.

Adding the Memory Buffer

We’re going to add the memory and the memory controller. Setting the size of memory is a little
confusing, so pay attenction.

From the IP catalog, select “Block Memory Generator”. Double-click on it and on the basic tab,
select “True Duel Port RAM”. Click “OK”. Ignore the size at this point, because it’s meaningless.

Add an “AXI BRAM Controller” and name it “bram”. Click on it and under “BRAM Options”,
select “1” for the Number of BRAM Interfaces. Click “OK”.

Now click “Run Connection Automation” and select everything under “bram”. This should con-
nect the AXI interface to the AXI bus and the BRAM port to Port A of blk mem gen 0, leaving
Port B of that module disconnected. Expand Port B to make connections.

Let’s start with the easy ones. Connect clkb to the main FCLK_CLK0.

5



We need to permanently enable the interface, which we do by creating a 1-bit constant, setting it
to 1, and tying it enb.

The memory is 32-bits wide, but is byte adressable by having a four-bit write enable mask web[3:0].
We want to drive them all with we from mem control 0. To do this, we use the “Concat” IP. In-
stantiate it, click on it, and set the number of inputs equal to 4. Tie the output to web[3:0] on the
block memory and tie the we output of mem control 0 to all four inputs.

We have bus size mismatches for both the address and the data buses. These would actually
compile correctly, but would give critical errors, and we want to make sure there are no ignorable
errors. In retrospect, it would have been easier to deal with in the design of the memory controller,
nut we can do it in the block diagram by using the Concat IP to set the unused lines to zero.

For the memory address, create a Concat instance, change the two intputs from “Auto” to “Man-
ual”, set the width of the first to 14 and the width of the second to 18. Tie the output to addrb[31:0]
on blk mem gen 0, in0[13:0] to mem_add[13:0] from mem control 0, and in1[17:0] to an 18
bit “Constant” instance, set to 0.

For the data, create another Concat instance, change the two intputs from “Auto” to “Manual”
and set the width of both to 16. Tie the output to dinb[31:0] on blk mem gen 0, in0[15:0] to
do_out[15:0] from xadc wiz 0, and in1[15:0] to an 16 bit “Constant” instance, set to 0.

Figure 7: Set bram to 16K.

Very important! Setting memory size is a bit tricky. Click on “Address Editor” tab. Expand out
until you see the “/bram/S AXI” entry and change it from 8K to 16K (12-bits of 4 byte words). It
should look like Figure 7.

Regenerate the layout and it should look something like the figure in the Appendix.

Compiling Project

As usual, from the sources window, right-click on “lab 8.bd” and select “Create HDL wrapper...”
and allow Vivado to maintain it. This should generate NO pop-up errors. If it does, it’s probably
because some of the bus sizes are mismatched. Read the errors and fix them. Regenerate the HDL
wrapper until you get no errors.

Now click “Generate Bitstream” and allow it to run all the intermediate steps. Agian, this should
generate NO popup errors. If it does, fix them. When it finishes generating the bitstream, cancel

6



out.

Testing and Using the Oscilloscope

Figure 8: IP blocks and memories.

As before, go to http://169.254.150.2:9090/lab in your browser to get to the Jupyter inter-
face. Create a new directory for Lab 8 and copy your new .bit and .hwh files into it (see last week’s
lab instructions for the details). Make sure they are named “lab 8.bit” and “lab 8.hwh”.

Load the files with

from pynq import Overlay

pynq = Overlay("lab_8.bit")

Execute help(pynq) and you should see the IP blocks and memories shown in Figure 8. If you
misspelled something or forgot to change a name in your design, don’t worry about it. It’s not
worth rebuilding. Just use whatever name appears here.

Assign all the GPIO interaces to local registers with

control = pynq.control

num_write = pynq.num_write

sample_period = pynq.sample_period

state = pynq.state

threshold = pynq.threshold

trigger_add = pynq.trigger_add

You don’t need to worry about setting the tri-state mask because these were all created to be
unidirectional.

Memory map the dual ported memory with

7



bram = pynq.bram.mmio.array

print(bram.shape)

And verify that the shape is (4096,). If it’s not, go back to your design and make sure the size of
bram is 16k, then recompile.

Test the memory interface by executing

import numpy as np

fill = np.arange(4096)

bram[:] = fill[:]

print(bram)

You should read back sequential numbers from 0 to 4095. Note that it’s very important to ac-
tually run through the indices as shown with [:]. Simply equating the two would replace bram

with a pointer to fill, which would screw things up in very confusing ways (I’m speaking from
experience here).

Now let’s do a sanity check. Set up the module as follows

sample_period.write(0,100000) # 100,000 clock cycles

num_write.write(0,4096) # fill the entire buffer

How long do you expect the readout cycle to take in this mode? Test it with the following:

import time

from time import sleep

starttime = time.time()

control.write(0,0) #Always toggle the bit to start the process!

control.write(0,0b00010000) #Start an untriggered write

while(state.read()!=0):

sleep(.0001)

endtime = time.time()

print(endtime-starttime)

By keeping control[0]=0 and toggling control[4], we have initiated an untriggered read which
will fill all memory locations. How long did it take?

If everything has worked fine up until now, let’s try a real input. Set the pulse generator to make
a sine wave of frequency 1 kHz, with a minumum value of 0V and a maxium of 3V. Connect the
ground to a ground on the board and the signal output to input A0 of the Arduino interface. Set the
sample period to a value that will give 100 samples per period at this frequency.

Repeat the readout sequency above. How long did it take? Fill another array with voltages by
multiplying the raw bram entries by 3.3/65536.

8



Plot the full voltage values of the full readout against sample number. Take a screenshot. Now just
plot the first 400 points to get more detail. Does it look like you expect? Include a screenshot.

That’s enough for now. Keep this design for next week!

Lab Writeup

Include a screenshot of your final design (yes, I know no detail will show) and follow any instruc-
tions in boldface.

9



Appendix

Complete design

10


