#include "ap_axi_sdata.h" #include #include #include #include #include "/home/sanjay/project/crypto-algorithms-master/sha256.h" #define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b)))) #define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b)))) #define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z))) #define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) #define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22)) #define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25)) #define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3)) #define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10)) /**************************** VARIABLES *****************************/ static const WORD k[64] = { 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5,0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5, 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3,0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174, 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc,0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da, 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7,0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967, 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13,0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85, 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3,0xd192e819,0xd6990624,0xf40e3585,0x106aa070, 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5,0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3, 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208,0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 }; struct AXI_VAL{ unsigned int data_single; bool last; }; SHA256_CTX ctx; BYTE data[10000]; typedef WORD T; inline void full_adder(T a, T b, T c, T& sum, T& carry) { sum = a ^ b ^ c; carry = ( (a&b) | (a&c) | (b&c) ) << 1; } T csa(T a=0, T b=0, T c=0, T d=0, T e=0) { T sum = 0; T carry = 0; int i = 0; full_adder(a,b,c,sum,carry); while(i!=2) { #pragma HLS unroll i++; T new_sum, new_carry; if(i==1) full_adder(sum,carry,d, new_sum, new_carry); else full_adder(sum,carry,e, new_sum, new_carry); sum = new_sum; carry = new_carry; } return sum + carry; } void sha256(hls::stream &in_stream_a, hls::stream &out_stream){ #pragma HLS INTERFACE axis port=in_stream_a #pragma HLS INTERFACE axis port=out_stream #pragma HLS INTERFACE ap_ctrl_none port=return AXI_VAL valIn_a, valOut; int i; //valIn_a = in_stream_a.read(); //if(valIn_a.data_single == '\0') //{ i=0; valIn_a = in_stream_a.read(); while(valIn_a.data_single != 0) { #pragma HLS PIPELINE II=1 //#pragma HLS unroll data[i++]= valIn_a.data_single; valIn_a = in_stream_a.read(); } //} sha256_init(); sha256_update(i); sha256_final(); for(int j=0;j<32;++j) { #pragma HLS unroll valOut.data_single = data[j]; if(j == 31) valOut.last = 1; else valOut.last = 0; out_stream.write(valOut); } } void sha256_transform() { WORD a, b, c, d, e, f, g, h, i, j, t1, t2, m[64],t1_sum,t1_carry,t2_sum,t2_carry,m_sum,m_carry; //#pragma HLS PIPELINE II=1 for (i = 0, j = 0; i < 16; ++i, j += 4) m[i] = (ctx.data[j] << 24) | (ctx.data[j + 1] << 16) | (ctx.data[j + 2] << 8) | (ctx.data[j + 3]); for ( ; i < 64; ++i) { m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16]; //csa(m_sum,m_carry,SIG1(m[i - 2]),m[i - 7],SIG0(m[i - 15]),m[i - 16]); //m[i] = m_sum+m_carry; } a = ctx.state[0]; b = ctx.state[1]; c = ctx.state[2]; d = ctx.state[3]; e = ctx.state[4]; f = ctx.state[5]; g = ctx.state[6]; h = ctx.state[7]; for (i = 0; i < 64; ++i) { t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i]; //t1 = csa(h,EP1(e),CH(e,f,g),k[i],m[i]); t2 = EP0(a) + MAJ(a,b,c); h = g; g = f; f = e; e = d + t1; //csa(t1_sum,t1_carry,h,EP1(e),CH(e,f,g),k[i],m[i],d); //e = t1_sum + t1_carry; d = c; c = b; b = a; a = t1 + t2; } ctx.state[0] += a; ctx.state[1] += b; ctx.state[2] += c; ctx.state[3] += d; ctx.state[4] += e; ctx.state[5] += f; ctx.state[6] += g; ctx.state[7] += h; } void sha256_init() { ctx.datalen = 0; ctx.bitlen = 0; ctx.state[0] = 0x6a09e667; ctx.state[1] = 0xbb67ae85; ctx.state[2] = 0x3c6ef372; ctx.state[3] = 0xa54ff53a; ctx.state[4] = 0x510e527f; ctx.state[5] = 0x9b05688c; ctx.state[6] = 0x1f83d9ab; ctx.state[7] = 0x5be0cd19; } void sha256_update(size_t len) { WORD i; for (i = 0; i < len; ++i) { ctx.data[ctx.datalen] = data[i]; ctx.datalen++; if (ctx.datalen == 64) { sha256_transform(); ctx.bitlen += 512; ctx.datalen = 0; } } } void sha256_final() { WORD i; i = ctx.datalen; // Pad whatever data is left in the buffer. if (ctx.datalen < 56) { ctx.data[i++] = 0x80; while (i < 56) ctx.data[i++] = 0x00; } else { ctx.data[i++] = 0x80; while (i < 64) ctx.data[i++] = 0x00; sha256_transform(); while (i < 56) ctx.data[i++] = 0x00; //memset(ctx.data, 0, 56); } // Append to the padding the total message's length in bits and transform. ctx.bitlen += ctx.datalen * 8; ctx.data[63] = ctx.bitlen; ctx.data[62] = ctx.bitlen >> 8; ctx.data[61] = ctx.bitlen >> 16; ctx.data[60] = ctx.bitlen >> 24; ctx.data[59] = ctx.bitlen >> 32; ctx.data[58] = ctx.bitlen >> 40; ctx.data[57] = ctx.bitlen >> 48; ctx.data[56] = ctx.bitlen >> 56; sha256_transform(); // Since this implementation uses little endian byte ordering and SHA uses big endian, // reverse all the bytes when copying the final state to the output hash. for (i = 0; i < 4; ++i) { data[i] = (ctx.state[0] >> (24 - i * 8)) & 0x000000ff; data[i + 4] = (ctx.state[1] >> (24 - i * 8)) & 0x000000ff; data[i + 8] = (ctx.state[2] >> (24 - i * 8)) & 0x000000ff; data[i + 12] = (ctx.state[3] >> (24 - i * 8)) & 0x000000ff; data[i + 16] = (ctx.state[4] >> (24 - i * 8)) & 0x000000ff; data[i + 20] = (ctx.state[5] >> (24 - i * 8)) & 0x000000ff; data[i + 24] = (ctx.state[6] >> (24 - i * 8)) & 0x000000ff; data[i + 28] = (ctx.state[7] >> (24 - i * 8)) & 0x000000ff; } }